Two mechanisms for MTF dependence on incident x-ray angle are demonstrated by an experimental technique that separates the two phenomena. The dominant effect is that travel of x-ray photons through the scintillator at non-normal incidence involves an in-plane component. This mechanism leads to a significant but deterministic blurring of the incident image, but has no effect on the noise transfer characteristics of the detector. A secondary effect is that at large angles to the surface normal, x-ray-to-optical conversion occurs at positions in the scintillator further away from the photodiode surface. This leads to a small net decrease in MTF and NPS at angles above 60 degrees. The deterministic character of the angular dependence of gain, MTF and NPS leads to the conclusion that sufficient angular range can be supported by this detector construction. Excellent functionality in the context of tomography is expected.
We have implemented a scatter-correction algorithm (SCA) for digital mammography based on an iterative restoration filter. The scatter contribution to the image is modeled by an additive component that is proportional to the filtered unattenuated x-ray photon signal and dependent on the characteristics of the imaged object. The SCA's result is closer to the scatter-free signal than when a scatter grid is used. Presently, the SCA shows improved contrast-to-noise performance relative to the scatter grid for a breast thickness up to 3.6 cm, with potential for better performance up to 6 cm. We investigated the efficacy of our scatter-correction method on a series of x-ray images of anthropomorphic breast phantoms with maximum thicknesses ranging from 3.0 cm to 6.0 cm. A comparison of the scatter-corrected images with the scatter-free signal acquired using a slit collimator shows average deviations of 3 percent or less, even in the edge region of the phantoms. These results indicate that the SCA is superior to a scatter grid for 2D quantitative mammography applications, and may enable 3D quantitative applications in X-ray tomosynthesis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.