To reduce the intensity of the Fresnel reflections of optical components, subwavelength structures prepared by reactive ion etching of SiO2 thin films were combined as the outermost layer with a multilayer system made of conventional thin-film materials. A hybrid coating was thus realized, with the nanoscaled structured outermost layer expected to further improve the antireflection properties of common interference stacks. The microscopic and optical spectroscopic analysis of the subwavelength structures revealed that pillar-shaped nanostructures formed during etching exhibit low-refractive-index properties and have a depth-dependent refractive index. To take into account the refractive-index gradient in the coating design, the optical properties of the nanostructures were modeled using the effective-medium approximation. The calculated average effective refractive index turned out to be 1.11 at 500-nm wavelength. A hybrid coating was designed to minimize the residual reflectance in the 400-nm to 900-nm spectral range for BK7 glass substrate. Experimental results demonstrated that the hybrid-coating approach yields a low residual reflectance with very good omnidirectional properties, owing to the properties of the nanostructured surface.
Advanced optical thin film design is the key to increase laser durability significantly: either by optimizing the electric field distribution within the coating, or by multi-index or rugate designs. Both ways may be even combined.
The electric field distribution within a thin film stack was optimized to avoid peak intensities in critical layers using refractive index engineering and/or layer thickness grading. Femtosecond laser mirrors and dichroics for 780 nm and 390 nm were designed, realized and characterized. Here we present LIDT measurements of electric field optimized mirrors and dichroics, which are almost a factor of three higher compared to standard coating designs. At 780 nm a LIDT of 1.49 J/cm2 has been achieved and at 390 nm 0.58 J/cm2. With the exception of Al2O3, all investigated coating materials show a proportional dependence of the LIDT with electric field maximum, as expected by theory. For Al2O3 based systems the electrical field penetrates deep into the layer stack, a high number of interfaces are involved and interface effects probably limit the achievable LIDT. A similar effect was observed for rugate designs. To exclude such interface effects from the LIDT measurement, a special AR design was developed, which is practically equal for all high index materials. Here a LIDT above substrate damage threshold of 1.7 J/cm2 was achieved.
To further reduce the intensity of the Fresnel reflections of optical components, subwavelength structures prepared by reactive ion etching of SiO2 thin films are combined as outermost layer with a multilayer system made of conventional thin film materials and prepared by magnetron sputtering. In this approach, a hybrid coating is realized in which the nanoscaled structured outermost layer is expected to further improve the antireflection properties of common interference stacks. The subwavelength structures are examined by spectroscopic ellipsometry, spectral photometry and scanning electron microscopy. The microscopic and optical spectroscopic analysis revealed that pillar-shaped nanostructures are formed during etching which exhibit low-index properties and have a depth-dependent refractive index. To take into account the index gradient in the coating design, the optical properties of the nanostructures are modeled using the effective medium approximation. The calculated average effective refractive index is 1.11 at 500 nm wavelength. A hybrid coating was designed to minimize the residual reflectance in the 400 – 900 nm spectral range for BK7 glass substrate. Experimental results showed that the hybrid coating achieves a low residual reflectance with very good omni-directional properties, owing to the properties of its nanostructured surface. The residual reflection of the hybrid coating is found to be two times smaller than the reflection obtained by applying a common interference multilayer system which demonstrates the benefit of the use of hybrid systems for the realization of broadband antireflective coatings with wide-angle properties.
The performance of optical components is usually improved by optical coatings. Some of these optical components
exhibit complex geometrical shapes and are therefore very difficult to coat in a homogeneous way. The spectral
performance of the optical coatings on such substrates will vary as a function of its geometry making it very difficult to
keep the spectral performance within customer specifications all over the substrate.
Examples for optics with complex geometries are half sphere lenses, freeform surfaces, diffraction gratings, microlense
arrays, large substrates etc.
We developed a simulation tool that can calculate and optimize the spectral performance of a given multilayer stack on
arbitrarily shaped optics as a function of the processing parameters of the coating plant. This tool will obviously reduce
the risk and the development costs.
The spectral performance of a multilayer stack is given in general by the coating design, that means by the individual
layer thicknesses and the refractive indices of the different layer materials. On curved optics different coating materials
exhibit different thickness and refractive index distributions. Consequently the optical layer stack will exhibit varying
spectral performance at different positions on the substrate.
Empirical models for thickness and refractive index distributions have been developed as a function of the most
important processing parameters (e.g., deposition rate, deposition angle, ion impingement rate and temperature).
Amorphous layers of metal oxides deposited by Plasma Ion Assisted Deposition (PIAD) are widely used in the field of optical coatings due to their salient properties which enable the deposition of complex multilayer stacks. However, their use in the Deep UV spectral range is restricted as the range of transparency is limited by the absorption due to the first electronic band transition. The only oxide suitable for applications at 193 nm seems to be Al2O3 for which a band gap energy of 8.7 eV (143 nm) is reported for the crystalline state. Yet for thin layers of Al2O3 no work reports the making of absorption free layers at 193 nm. In this study we investigate how the amorphous structure of PIAD-deposited Al2O3 thin films influences the electronic structure and as a consequence of that the absorption behaviour for wavelengths close to the absorption edge. The electronic structure is worked out by a theoretical approach where in a first step the geometric structure is simulated using a Monte Carlo approach. Using this geometric structure the electronic structure is calculated by the tight-binding method in a second step. With these data absorption spectra are calculated and compared to measurements on PIAD Al2O3 layers. The experimental data for the start of the absorption lie on the longer wavelength side of the limit set by the amorphous structure - a fact, that encourages further work on the optimization of the deposition parameters.
Ag-dielectric multilayers are widely used in the production of heat reflecting filters, induced transmission filters, beam splitters, etc. The performance of such coatings in the visible part of the spectrum is sometimes strongly influenced by a plasmon absorption in the Ag-layer or a surface plasmon absorption in the Ag-dielectric interfaces. The strength of the plasmon absorption is very sensitive to the layer structure, the light polarization and the angle of incidence. As a result, the target specifications for reflection and transmission are not reached easily. We investigate PVD-deposited TiO2-Ag-TiO2 multilayers by means of optical reflection and transmission and Grazing Incidence X-ray Reflectometry (GIXR). The GIXR-method yields the individual layers thicknesses and the interface roughness. Some of the coatings have a broad absorption peak between 500 and 400nm that cannot be modeled using the bulk dielectric function of Ag. The magnitude of the absorption peak is correlated with the measured roughness of the TiO2-Ag interfaces. The analysis of the results shows the critical parameters for the deposition process.
Thin film multilayer dielectric coatings are widely used for the fabrication of various optical components. The precise knowledg of the optical constants and the thickness of the individual layers is one of the most important factors for the successful design and production of optical interference coatings with optimal performance. As thin film materials within a multilayer stack often have different optical constants compared to single layers deposited at the same conditions a disagreement between measured and predicted optical response of a multilayer system is observed. A better agreement can be achieved if the optical constants of the layer materials are determined from measurements of multilayer stacks. In the present work such an approach is applied for the optical characterization of popular optical coating materials. The optical constants of TiO2, Ta2O5, Al2O3 and HfO2 are determined in the spectral region 200 nm up to 800 nm using the following measurement techniques: spectroscopic ellipsometry, intensity transmission and X-ray grazing incidence reflectometry. The measured samples are periodic stacks consisting of 12 layers made of one of these materials in combination with SiO2. The ellipsometric and intensity transmission data are fitted simultaneously using the Tauc-Lorentz parameterization for the optical constants of the layers. The results are compared with the thickness of the layers obtained from X-ray grazing incidence reflectometry. The comparison of the predicted and measured optical response of a 3 material multilayer stack demonstrates the accuracy of the extracted optical constants.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.