Manipulation of interfacial magnetism utilizing voltage pulses can lead to energy-efficient scalable nanomagnetic devices. Through voltage-controlled magnetic anisotropy (VCMA), we had previously shown the potential to achieve non-volatile magnetoresistive random-access memory (MRAM) technology that is 100 times more energy-efficient than commercially available spin-transfer torque MRAM [1]. Building on prior work on VCMA-based skyrmion-mediated reversal of ferromagnetic states and its scaling to 20 nm [2], we will present new experimental demonstrations of manipulation of skyrmions in magnetoionic heterostructures with an electric field. This talk will also focus on energy-efficient magnetoionic control of skyrmions in (Co/Ni)N-based heterostructures for memory application. Furthermore, our talk also demonstrates implementing physical reservoir computing, a neuromorphic process typically used for classifying and predicting temporal data, with the energy-efficient magnetoionic process.
References:
[1] Bhattacharya et al. ACS applied materials & interfaces, 10(20), 17455-17462 (2018).
[2] Rajib et al. Scientific reports, 11(1), 20914 (2021).
A critical challenge towards integrating 3-dimensional (3D) magnetic nanostructures into neuromorphic circuitry is stabilizing different magnetic states that are controllable via external stimuli. Here, we demonstrate quasi-ordered and random interconnected magnetic nanowire networks as potential candidates. In these networks, step-by-step magnetization reversal mediated by domain wall (DW) pinning / depinning at the network intersections is observed. The pinning/depinning of the DWs can be further controlled by the driving current density. These properties are amenable to implement neuromorphic computing elements such as artificial synapses.
Prevention of integrated circuit counterfeiting through logic locking faces the fundamental challenge of securing an obfuscation key against physical and algorithmic threats. Previous work has focused on strengthening the logic encryption to protect the key against algorithmic attacks but failed to provide adequate physical security. In this work, we propose a logic locking scheme that leverages the non-volatility of the nanomagnet logic (NML) family to achieve both physical and algorithmic security. Polymorphic NML minority gates protect the obfuscation key against algorithmic attacks, while a strain-inducing shield surrounding the nanomagnets provides physical security via a self-destruction mechanism, securing against invasive attacks. We experimentally demonstrate that shielded magnetic domains are indistinguishable, securing against imaging attacks. As NML suffers from low speeds, we propose a hybrid CMOS logic scheme with embedded obfuscated NML “islands”. The NML secures the functionality of sensitive logic while CMOS drives the timing-critical paths.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.