Laser propagation through deep turbulence requires adaptive optic systems capable of correcting wavefront distortions with large phase shifts. The large phase shifts, can be overcome by using dual deformable mirrors in a woofer-tweeter configuration. In this configuration the woofer corrects low spatial-frequency aberrations and the tweeter corrects higher order distortions. In this work, we perform a simulated side-by-side comparison of various control methods for woofer-tweeter adaptive optics systems. Attention is focused on the deep turbulence regime, where the wavefront distortions contain discontinuities. Our simulated wavefronts originate from a cooperative point-like beacon placed at the target plane. The light from the beacon propagates horizontally through multiple kilometers of turbulent atmosphere to the receiving aperture. At the receiver, the wavefronts are interfered with a local reference wave to produce a hologram. Through digital holographic processing, we recover the complex wave field at the receiver, in which the phase contains both branch cuts and branch points. These discontinuities pose a challenging problem for continuous surface mirrors required for high-energy applications. Our study explores the ability of previously published control methods to correct wavefronts with branch points and cuts. Various control methods for woofer-tweeter systems, including zonal and modal methods, are compared using the Strehl ratio and stroke efficiency as performance metrics. The investigation of these control methods will enable future applications to maximize the the stroke of dual deformable mirror adaptive optics systems leading to better energy on target in deep turbulence conditions.
EUV lithography is promising for addressing upcoming, <10nm nodes for the semiconductor industry, but with this promise comes the need for reliable metrology techniques. In particular, there is a need for actinic mask inspection in which the imaging wavelength matches that of the intended lithography process, so that the most relevant defects are detected. Here, we demonstrate tabletop, ptychographic, coherent diffraction imaging (CDI) in reflection- and transmission-modes of extended samples, using a 13 nm high harmonic generation (HHG) source. We achieve the first sub-wavelength resolution EUV image (0.9λ) in transmission, the highest spatial resolution using any 13.5 nm source to date. We also present the first reflection-mode image obtained on a tabletop using 12.7 nm light. This work represents the first 12.7 nm reflection-mode image using any source of a general sample.
We present an extension of ptychography coherent diffractive imaging that enables simultaneous imaging of several areas of an extended sample using multiple, spatially separated interfering beams. We show that this technique will increase the throughput of an imaging system by a factor that is equal to the number of beams used. This allows for the acquisition of large field of view images with near diffraction-limited resolution without an increase in data acquisition. This represents a significant step towards large field of view, high resolution imaging in the EUV and x-ray energy regimes.
We demonstrate hyperspectral coherent imaging in the EUV spectral region for the first time, without the need for hardware-based wavelength separation. This new scheme of spectromicroscopy is the most efficient use of EUV photons for imaging because there is no energy loss from mirrors or monochromatizing optics. An EUV spectral comb from a tabletop high-harmonic source, centered at a wavelength of 30nm, illuminates the sample and the scattered light is collected on a pixel-array detector. Using a lensless imaging technique known as ptychographical information multiplexing, we simultaneously retrieve images of the spectral response of the sample at each individual harmonic. We show that the retrieved spectral amplitude and phase agrees with theoretical predictions. This work demonstrates the power of coherent EUV beams for rapid material identification with nanometer-scale resolution.
We present an extension to ptychography that allows simultaneous deconvolution of multiple, spatially separate, illuminating probes. This enables an increased field of view and hence, an increase in imaging throughput, without increased exposure times. This technique can be used for any non-interfering probes: demonstrated with multiple wavelengths and orthogonal polarizations. The latter of which gives us spatially resolved polarization spectroscopy from a single scan.
We use EUV coherent microscopy to obtain high-resolution images of buried interfaces, with chemical specificity, in 2+1 dimensions. We perform reflection mode, ptychographic, coherent diffractive imaging with tabletop EUV light, at 29nm, produced by high harmonic generation. Our damascene-style samples consist of copper structures inlaid in SiO2, polished nearly flat with chemical mechanical polishing. We obtain images of both an unaltered damascene as well as one buried below a 100nm thick layer of evaporated aluminum. The aluminum is opaque to visible light and thick enough that neither optical microscopy, SEM, nor AFM can access the buried interface. EUV microscopy is able to image the buried structures, non-destructively, in conditions where other techniques cannot.
At the Lawrence Livermore National Laboratory (LLNL) we have engineered a silicon prototype sample that can be used to reflect focused hard x-ray photons at high intensities in back-scattering geometry.1 Our work is motivated by the need for an all-x-ray pump-and-probe capability at X-ray Free Electron Lasers (XFELs) such as the Linac Coherent Light Source (LCSL) at SLAC. In the first phase of our project, we exposed silicon single crystal to the LCLS beam, and quantitatively studied the x-ray induced damage as a function of x-ray fluence. The damage we observed is extensive at fluences typical of pump-and-probe experiments. The conclusions drawn from our data allowed us to design and manufacture a silicon mirror that can limit the local damage, and reflect the incident beam before its single crystal structure is destroyed. In the second phase of this project we tested this prototype back-reflector at the LCLS. Preliminary results suggest that the new mirror geometry yields reproducible Bragg reflectivity at high x-ray fluences, promising a path forward for silicon single crystals as x-ray back-reflectors.
Coherent diffraction imaging (CDI) has matured into a versatile phase-contrast microscopy technique capable of producing diffraction limited images without the need for high precision focusing elements. CDI has been most appropriately applied in the EUV/X-ray region of the spectrum where imaging optics are both difficult to produce and inefficient. By satisfying basic geometric constraints (such as Nyquist sampling of scattered intensities) diffraction imaging techniques essentially replace any imaging elements with sophisticated computer algorithms. We demonstrate the utility of our CDI-based, phase-contrast EUV microscope by quantitatively imaging objects in both transmission and reflection. Patterned feature depth is obtained in transmission using keyhole coherent diffraction imaging (KCDI) and feature height is quantitatively extracted in the first general, table-top reflection mode CDI microscope.
Recent breakthroughs in high harmonic generation have extended the reach of bright tabletop coherent light sources
from a previous limit of ≈100 eV in the extreme ultraviolet (EUV) all the way beyond 1 keV in the soft X-ray region.
Due to its intrinsically short pulse duration and spatial coherence, this light source can be used to probe the fastest
physical processes at the femtosecond timescale, with nanometer-scale spatial resolution using a technique called
coherent diffractive imaging (CDI). CDI is an aberration-free technique that replaces image-forming optics with a
computer phase retrieval algorithm, which recovers the phase of a measured diffraction amplitude. This technique
typically requires the sample of interest to be isolated; however, it is possible to loosen this constraint by imposing
isolation on the illumination. Here we extend previous tabletop results, in which we demonstrated the ability to image a
test object with 22 nm resolution using 13 nm light [3], to imaging of more complex samples using the keyhole CDI
technique adapted to our source. We have recently demonstrated the ability to image extended objects in a transmission
geometry with ≈100 nm resolution. Finally, we have taken preliminary CDI measurements of extended nanosystems in
reflection geometry. We expect that this capability will soon allow us to image dynamic processes in nanosystems at the
femtosecond and nanometer scale.
Coherent diffractive imaging (CDI) using EUV/X-rays has proven to be a powerful microscopy method for imaging nanoscale objects. In traditional CDI, the oversampling condition limits its applicability to small, isolated objects. A new technique called keyhole CDI was demonstrated on a synchrotron X-ray source to circumvent this limitation. Here we demonstrate the first keyhole CDI result with a tabletop extreme ultraviolet (EUV) source. The EUV source is based on high harmonic generation (HHG), and our modified form of keyhole CDI uses a highly reflective curved EUV mirror instead of a lossy Fresnel zone plate, offering a ~10x increase in photon throughput of the imaging system, and a more uniform illumination on the sample. In addition, we have demonstrated a record 22 nm resolution using our tabletop CDI setup, and also the successful extension to reflection mode for a periodic sample. Combining these results with keyhole CDI will open the path to the realization of a compact EUV microscope for imaging general non-isolated and non-periodic samples, in both transmission and reflection mode.
We implement coherent diffractive imaging (CDI) using a phase-matched high-harmonic generation (HHG) source
at 13 nm, demonstrating reconstructed images with a record 22 nm resolution for any tabletop, light-based
microscope. We also demonstrate the first reflection-mode CDI using a compact extreme ultraviolet (EUV)
source, achieving ≈100 nm resolution. A clear path towards even higher spatial resolution reflection-mode
tabletop imaging using apertured-illumination schemes will be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.