To overcome the increased absorption of commercially available waveguide platforms for UV wavelengths, Al2O3 has been suggested due to its low losses below 450 nm. In this work, we demonstrate Al2O3 waveguides fabricated via reactive sputtering, electron beam lithography and dry etching with losses as low as 2.3 dB/cm at 369 nm. A variety of building blocks required for typical photonic devices are realized using the process which shows promise as a waveguide platform for applications that require UV wavelengths.
Reactive sputtering provides a scalable and robust approach to fabricate erbium doped waveguide amplifiers and can be used to integrate devices with other waveguide platforms. In this work, we present recent results on high gain (>25 dB) in Al2O3:Er3+ amplifiers fabricated via reactive sputtering, which are vertically integrated with underlying LioniX TriPleX Si3N4 circuitry.
In this talk we present on recent advancements in hybrid-glass waveguides on silicon photonic platforms. We describe novel monolithic hybrid integration approaches and waveguide designs for functional glass claddings on silicon-on-insulator (SOI). We describe our results on low-loss hybrid tellurite-silicon waveguides, high-Q resonators, and amplifiers and lasers and our recent efforts to optimize their performance and utility in silicon photonic systems. Such devices are promising for new functionalities in sensing, metrology, computing, and communications applications.
We demonstrate integrated distributed Bragg reflector lasers on a hybrid platform composed of silicon nitride waveguides coated with erbium-doped tellurium dioxide. The asymmetrical laser cavities are enclosed by gratings patterned on the 2.2-cm-long waveguide walls. Cavities with varying grating strengths are studied, yielding laser efficiencies up to 0.36%, a minimum lasing threshold of 13 mW, and emission wavelengths between 1530 and 1565 nm.
Compact laser sources are crucial for the next generation of photonic integrated circuits, where bulky mechanical components and other optical bench top systems can be realized on a single tiny chip. Similarly, biological sensing, environmental real-time monitoring and telecommunications all benefit from the advances seen in on-chip photonic components, in particular, active devices such as the amplifier and laser which have significant challenges in being implemented on a silicon substrate. The study of Erbium doped Aluminium Oxide (Al2O3:Er3+) has attracted significant interest from the research community due to its high solubility for rare-earth ions, wide optical transparency, and capability to be integrated as a hybrid coating or patterned into waveguides on a Si substrate using conventional fabrication techniques. Results point towards amorphous Al2O3 as an ideal candidate for further research into the discovery of amplifiers and lasers for photonic integrated circuits (PIC). Here, we report on the spectroscopic parameters as well as prospects for Al2O3:Er3+ doped films and their integration onto an existing low-loss waveguide platform for the realization of amplifiers and lasers. A review of past results will be given with pathways towards optimized films and improved laser performance in the future.
We report on the design and measurement of tellurium oxide microcavity resonators coupled to silicon bus waveguides on silicon photonic chips. The resonators are fabricated using a standard silicon photonics foundry processing flow in which the SiO2 top-cladding is etched in a ring shape and aligned next to a silicon bus waveguide. The resulting microtrench is coated in a tellurium oxide film by reactive sputtering in a post-processing step to form the waveguiding layer of the resonator. A 100-μm radius trench with a 1115-nm-thick TeO2 film is measured to have an internal Q factor of 0.9 × 105. Smoothing the etch wall surface with a fluoropolymer coating is shown to enhance the Q factor of several devices, with a trench coated in a 630-nm-thick TeO2 film demonstrating a Q factor of 2.1 × 105 corresponding to 1.7-dB/cm waveguide loss. These results demonstrate a potential pathway toward monolithic integration of tellurite glass-based nonlinear and rare-earth-doped devices compatible with silicon photonics platforms.
We present on recent progress on a hybrid tellurite glass and silicon nitride photonic platform. We show low loss waveguides and Q factors < 10^6 in microring resonators. We also show rare-earth-doped active devices, including erbium-doped and thulium-doped waveguide amplifiers and thulium-doped microring lasers. Using the same approach, we demonstrate nonlinear functionalities including efficient four-wave-mixing, supercontinuum generation and third harmonic generation in compact microring resonators and waveguides. The platform is highly promising for compact and low-cost passive, active and nonlinear photonic integrated circuits for applications in computing, communications, sensing and metrology.
Tellurite glasses have promising material properties in applications for linear and nonlinear integrated optical devices. Tellurite glasses have high rare earth solubilities for applications in rare earth doped lasers as well as high nonlinear refractive indices, Raman gain coefficients and acousto-optic figures of merit. However, it is difficult to take advantage of tellurite glass properties in silicon photonics, as the waveguiding materials available for use in silicon photonic devices are typically limited to silicon, silicon dioxide, silicon nitride, and germanium. Here, we report on a tellurium oxide whispering gallery resonator, integrated onto a silicon photonic chip and coupled to a silicon waveguide. The silicon waveguides are fabricated using a standard foundry process and the cladding oxide is etched in a ring shape with precise alignment to the bus waveguides at gaps from 0.2 to 1.0 μm to form the cavity. Post processing deposition of a tellurium oxide film coats the bottom of the etched oxide cavity, forming a tellurium oxide waveguiding layer, into which light can be coupled from the silicon waveguide. A resonator with a radius of 40 μm and a 1.1-μm-thick tellurium oxide coating is measured to have an internal Q-factor of greater than 1E5. These results illustrate the potential for integration of tellurite glass devices into silicon photonic microsystems. Applications of this cavity structure in optical sensing, design considerations and methods to improve performance will be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.