We demonstrate the feasibility of time-bin encoding in the third telecommunication window within the frame of Quantum Key Distribution (QKD) protocol in Free Space Optical (FSO) horizontal links. Operating at a 0.6 GHz repetition rate, the QKD transmitter delivers time-bin qubits at 1558.98nm over a turbulent channel linking two nearby buildings in the city of Florence. To mitigate those effects, the receiver mounts a tip/tilt adaptive system which proves a better Free Space (FS) to fiber coupling ratio stability with respect to no active control. Furthermore, we show that the Photonic Integrated Circuit (PIC) unbalanced Mach-Zender Interferometer (uMZI) in the quantum detection scheme, combined with Superconducting Nano-Wire Single Photon Detectors (SNSPD), guarantees long stability and an high Secret Key Rate (SKR) in the order of the thousands of kilobits per second (kbps).
We propose a new feedback correction system driven by artificial intelligence (AI), in particular reinforcement learning (RL), able to learn from the turbulence pattern how to correct the distortions. Indeed, RL is utilized to solve difficult tasks in chaotic problems making predictions based on the environment responses. We apply this novel approach in a Quantum Key Distribution (QKD) free space horizontal link field-trial test within the metropolitan area of Florence operating the Quantum Communication in the third telecommunication window (1550nm) with time-bins states. We use the combination of a fast-steering mirror (FSM), a four-quadrant detector (QD), and a closed-loop to correct the turbulence-induced beam-wandering effect. Our closed-loop architecture is composed of a core Proportion-Integrative-Derivative (PID) controller and an auxiliary RL algorithm to find the optimal P, I, and D parameters. We demonstrate the robustness and effectiveness of using the RL approach to smooth the turbulence effects in communication.
Data protection and confidentiality have become a serious concern in today’s world. Their security is guaranteed by cryptographic protocols, which heavily rely on random numbers as a measure against predictability. Classically, randomness is generated via complex but deterministic algorithms, which are vulnerable to attacks. Quantum Random Number Generators (QRNGs) have emerged as a promising solution, as they provide true random numbers based on the intrinsic non-deterministic nature of quantum mechanics. However, critical challenges for QRNGs are the certification and quantification of their genuine randomness, especially in the presence of untrusted devices, and their compactness for systematic deployment. In this feasibility study, to face these challenges, we propose to use a silicon-photonic platform, leveraging on the concept of quantum contextuality for a semi-device independent generator. In particular, we use Klyachko-Can-Binicioglu-Shumovsky (KCBS) inequality to assess a fundamental property of quantum measurements: that their outcomes depend on the specific measurement context.
In this work, we implement a proof-of-concept underwater free-space Quantum Key Distribution (QKD) system and analyze its performance in a controlled laboratory test environment. We implement a BB84 protocol with time-bin encoding operating at 520 nm. The quantum channel was composed of a five-meter-long tank equipped with the possibility of actively controlling the water turbulence. Finally, we measure the Quantum Bit Error Rate (QBER) in the various scenarios and we report the results together with those relating to the parameters of the considered channel.
Today’s society heavily relies on secure communications, which can be guaranteed by Quantum Key Distribution (QKD), the most mature quantum technology. However, achieving long-distance links without relying on trusted nodes is still challenging. An important limitation is the non-ideality of detection systems, where intrinsic dark counts can hinder key extraction. This work proposes using state-of-the-art superconducting nanowire singlephoton detectors (SNSPD) with ultra-low dark count rates (<1 Hz) to reduce the quantum bit error rate (QBER) and achieve a higher secret key rate. Together with a high-rate QKD transmitter and a self-stabilizing receiver, we enabled a key exchange over 55 dB, corresponding to 340 km over an ultra-low-loss optical fiber.
Here we present the experimental distribution of four-dimensional entangled qudits between integrated photonic devices. Qudits offer advantages over qubits such as higher information capacity, and improved noise robustness. Integrated photonics allows for the reliable preparation and manipulation of large-scale entangled quantum states on a single device, with outstanding phase stability. However, reliable transmission of these states between devices, integrated or otherwise, has been a challenge, mainly due to the difficulty of maintaining phase stability between multiple optical channels. We implement an active phase stabilisation algorithm, utilising the same circuitry as for the quantum states, enabling stable distribution of qudits.
A major challenge in photonic quantum technologies is two-photon interference from distinct quantum emitters on the same chip. Here, we show and discuss recent results on Hong–Ou–Mandel interference experiments using couples of single organic molecules within few tens of microns, yielding post-selected visibilities of up to 97%. In particular, we discuss the potential interest for future realizations of measurement-device independent quantum key distribution protocols for information-theoretic secure communication.
Quantum key distribution (QKD) is the first commercial application of the second quantum revolution. Although QKD systems have already been developed and implemented all around the world, some open challenges are limiting the overall deployment of this technology (limited key rate, limited link distance, etc.). By improving the current QKD protocols, it is possible to increase the final secret key generation rate. In this work, we compare 1-decoy with 2-decoy methods in BB84 protocol over an underwater optical fiber link connecting Malta to Italy, showing that 2-decoy can achieve more than twice the key rate of 1-decoy method.
Silicon photonics based on CMOS technology is a very attractive platform to build compact, low-cost and scalable quantum photonics integrated circuits addressing the requirements of quantum key distribution protocols. We show record low propagation losses below 0.5 dB/cm and below 0.05 dB/cm for silicon and silicon nitride waveguides respectively. We will present our results on integrated components such as hybrid III-V on silicon lasers for weak coherent pulse generation, high-quality microresonators for entangled photon pair generation and we will show our recent developments on high crystalline quality NbN thin films with improved critical temperature for waveguide-integrated superconducting single photon detectors.
Quantum communication, i.e., the ability to transport a quantum state from one place to another, represents a crucial task for many quantum applications, i.e. quantum cryptography, quantum secret sharing and quantum networks. However current systems present main limitations in terms of low information rates, short propagation distances and low compatibility with today classical optical infrastructure. These restrictions bound the development of this field and its practical applications. High-dimensional quantum communication can help in overcoming these challenges enhancing the information rate and the system error tolerance. We here report our recent results on high-dimensional fiber based quantum communication, both with multicore and multimode fibers, in which we prove the capability of preparing, manipulating, transmitting and measuring advanced quantum states with excellent fidelities. Our results pave the way towards high-dimensional quantum communication in an optical fiber infrastructure.
Entanglement distribution between distant parties is one of the most important and challenging tasks in quantum communication. Distribution of photonic entangled states using optical fiber links is a fundamental building block toward quantum networks. Among the different degrees of freedom, orbital angular momentum (OAM) is one of the most promising due to its natural capability to encode high dimensional quantum states. We experimentally demonstrate fiber distribution of hybrid polarization-vector vortex entangled photon pairs. To this end, we exploit a recently developed air-core fiber that supports OAM modes. High fidelity distribution of the entangled states is demonstrated by performing quantum state tomography in the polarization-OAM Hilbert space after fiber propagation and by violations of Bell inequalities and multipartite entanglement tests. The results open new scenarios for quantum applications where correlated complex states can be transmitted by exploiting the vectorial nature of light.
A novel sensing platform based on thin metal bilayer for surface plasmon resonance (SPR) in a D–shaped plastic optical fiber (POF) has been designed, implemented and tested. The experimental results are congruent with the numerical studies. This platform has been properly optimized to work in the 1.38 -1.42 refractive index range and it exhibits excellent sensitivity. This refractive index range is very interesting for bio-chemical applications, where the polymer layer are used as receptors (e.g. molecularly imprinted polymer) or to immobilize the bio-receptor on the metal surface. The proposed metallic bilayer is based on palladium and gold films and replaces the traditional gold by exhibiting higher performances. Furthermore, the deposition of the thin bilayer is a single process and no further manufacturing step is required. In fact, in this case the photoresist buffer layer between the POF core and the metal layer, usually required to increase the refractive index range, is no longer necessary.
Giuseppe Vallone, Daniele Dequal, M. Tomasin, M. Schiavon, F. Vedovato, Davide Bacco, Simone Gaiarin, Giuseppe Bianco, Vincenza Luceri, Paolo Villoresi
We report on several experiments of single photon transmission from space to ground realized at the Matera Laser Ranging Observatory (MLRO) of the Italian Space Agency in Matera (Italy). We simulated a source of coherent pulses attenuated to the single photon level by exploiting laser ranging satellites equipped with corner-cube retroreflectors (CCRs). By such technique we report QC with qubits encoded in polarization from low-Earth-orbit (LEO) at distance up to 2500km from the ground station, achieving a low quantum bit error ratio (QBER) for different satellites. The same technique is exploited to demonstrate single photon exchange with a medium-Earth-orbit (MEO) satellite, Lageos-2 at more than 7000 km of distance from the MLRO station. In both experiments the temporal jitter of the received counts is of the order of 1.2ns FWHM due to the intrinsic jitter of the single photon detectors. In order to improve the discrimination of signal from the background and reaching distances corresponding to GEO satellites, we improved the detection scheme by using fast single photon detectors with 40 ps FWHM jitter. We report improved single photon detection jitter from Beacon-C and Ajisai, obtaining 340 ps FWHM in the best case.
Low energy ions coming from the quite solar wind are considered among the causes of potential damage of the optical instrumentation and components on board of ESA Solar Orbiter. Predictions of space radiation parameters are available for instruments on board of such mission. Accelerators are commonly used to reproduce the particle irradiation on a spacecraft during its lifetime at the ground level. By selecting energies and equivalent doses it is possible to replicate the damage induced on space components. Implantation of Helium ions has been carried out on different single layer thin films at LEI facility at Forschungszentrum Dresden-Rossendorf varying the total dose. Profile of the implanted samples has been experimentally recovered by SIMS measurements. The change in reflectance performances of such coatings has been experimentally evaluated and modelled. The outcomes have been used to verify the potential impact on the METIS instrument and to drive the optimization of the M0 mirror coating..
Extreme Ultraviolet (EUV) multilayer (ML) technology has been intensively applied in many scientific and technological fields such as solar physics and photolithography. More recently, the advent of free electron lasers (FEL) emitting bright sub-ps pulses with very high quality in term of intensity stability, coherence and temporal shape has encouraged the usage of multilayer coatings also in the transport and manipulation of FEL radiation. In fact, conventional single layers coated mirrors provide negligible reflectance in the EUV spectral range whereas ML mirrors can reach high efficiency at normal incidence without affecting the pulses characteristics. Such optical elements have been also exploited at FERMI@ELETTRA FEL where novel multilayer coatings specifically conceived for pump and probe experiment and ultrafast absorption spectroscopy have been designed. The main results are reported.
Graphene–metals interfaces are investigated in many subject areas both applicative and speculative. The interest mainly
stems from the possibility for CVD synthesis of large area graphene on metals. In this case the metal acts as a catalyst for
complete dehydrogenetaion of hydrocarbon precursors that leaves carbon behind at the surface. Such bilayer are also
very appealing for surface plasmon resonance devices, since graphene acts both as a protective layer and biorecognition
element. Several pairs of graphene–metal interfaces have been studied in terms of SPR performance and physicalchemical
properties at the interface. With regard to this last aspect, NEXAFS spectroscopy is a powerful method to study
single-, double-, and few- layers graphene and to illustrate any evolution of the electronic states.
Metallic nanostructures are widely studied because of their peculiar optical properties. They possess characteristic
absorbance spectra with a peak due to plasmonic resonance. This feature is directly dependent on the nanostructures
shape, size, distribution and environment surrounding them. This makes them good candidates for a variety of
applications, such as localized surface plasmon resonance sensing (LSPR), surface-enhanced Raman scattering (SERS)
and photovoltaics. A well established technique used to create nanoisland on flat substrates is performing a thermal
treatment after the deposition of a thin metal film. While the most widely investigated metal in this context is gold, we
have extended our investigation to palladium, which is interesting for sensing applications because it has an excellent
hydrogen absorption ability. The morphological properties of the nanoisland depend mainly on the starting thickness of
the deposited layer and on the annealing parameters, temperature and duration. The deposition and annealing process has
been investigated, and the resulting samples has been tested optically and morphologically in order to optimize the
structures in view or their application for sensing purposes.
Single layer thin films have been exposed to low energy alpha particles (4keV). Implanted doses are equivalent to those accumulated in 1, 2, 4 and 6 years of ESA Solar Orbiter mission operation. Two ions fluences have been considered. In order to change the total dose accumulated, for each ion flux the time of exposure was varied. Reflectance in the visible spectral range has been measured prior and after implantation. Results show no significant change in performances in gold and palladium, while a small decrease in performances is observed in iridium. The implantation rate does not seem to affect the experiment.
Probing of Hermean Exosphere By Ultraviolet Spectroscopy (PHEBUS) is a dual channels spectrometer working in the Extreme UltraViolet (EUV) and Far UltraViolet (FUV) range. It will be on board of ESA BepiColombo cornerstone mission and it will be devoted to investigate the composition, the dynamic, the formation and the feeding mechanisms of Mercury’s exosphere system. A consistent interpretation of the observational data collected by PHEBUS requires a deeply knowledge of its radiometric behavior. The Mueller’s matrix formalism can be adopted to derive an accurate radiometric model able to takes into account also the polarization state of the source observed by PHEBUS. Moreover, this theoretical model can be further verified and refined during an experimental ground calibration campaign. In this work we present the radiometric model derived for PHEBUS spectrometer together with some results obtained during the Flight Model (FM) ground calibration which is still ongoing. In particular, the obtained results employing this approach show that this is a complete and versatile method to perform the radiometric calibration of a generic space instrument.
The interest in graphene–like materials involves many research areas, including the development of biosensors devices. We have recently studied the use of graphene/metal bilayer for surface plasmon resonance (SPR) equipment devoted to detection of chemical processes and biomolecules recognition. The dual role of graphene is to protect the metal layer underneath and to enhance the bioaffinity by adsorbing biomolecules with carbon–based ring structures. Depending on the application, it may be necessary laser and chemical treatments of graphene to improve the performances of the whole device. The processing effects will be investigated by near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The use of synchrotron light is mandatory for NEXAFS analysis since a continuous EUV source of selected polarization is required. The ideas, the analysis and the results are the subjects of this work.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.