The development of a field-portable fiber-laser based hyperspectral imaging system for standoff detection and identification of trace levels of explosives is presented. The prototype system combines a hybrid of frequency and time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy techniques with spatial scanning for rapid detection of microscopic traces of explosives on liquid or solid surfaces. An all-fiber light source architecture enables generation of three CARS excitation beams from a compact, single-unit femtosecond fiber laser and a highly nonlinear optical fiber. The light backscattered from the target surface is collected by a spectrometer, and a high-resolution automated stage system allows for two-dimensional microscopic CARS imaging. We demonstrate trace explosive detection in <100 ms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.