In this work we propose a fast, model-based restoration scheme for noisy or undersampled spec- tral CT data and demonstrate its potential utility with two simulation studies. First, we show how one can denoise photon counting CT images, post- reconstruction, by using a spectrally averaged im- age formed from all detected photons as a high SNR prior. Next, we consider a slow slew-rate kV switch- ing scheme, where sparse sinograms are obtained at peak voltages of 80 and 140 kVp. We show how the missing views can be restored by using a spectrally av- eraged, composite sinogram containing all of the views as a fully sampled prior. We have chosen these ex- amples to demonstrate the versatility of the proposed approach and because they have been discussed in the literature before3,6 but we hope to convey that it may be applicable to a fairly general class of spectral CT systems. Comparisons to several sparsity-exploiting, iterative reconstructions are provided for reference.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.