We provide a direct comparison between the InGaAs avalanche photodiode (APD) and the NbN superconducting
single photon detector (SSPD) for applications in fiber-based quantum cryptography. The quantum efficiency
and dark count rate were measured for each detector, and used to calculate the quantum bit error rate (QBER)
and shared key rate for a QKD link. The results indicate that, despite low quantum efficiency, the speed of
the SSPD makes it a superior detector for quantum information applications. Finally, we present results of an
initial integration of an SSPD into a receiver node of the DARPA quantum network to perform quantum key
distribution.
This paper reports the current status of the DARPA Quantum Network, which became fully operational in BBN's laboratory in October 2003, and has been continuously running in 6 nodes operating through telecommunications fiber between Harvard University, Boston University, and BBN since June 2004. The DARPA Quantum Network is the world's first quantum cryptography network, and perhaps also the first QKD systems providing continuous operation across a metropolitan area. Four more nodes are now being added to bring the total to 10 QKD nodes. This network supports a variety of QKD technologies, including phase-modulated lasers through fiber, entanglement through fiber, and freespace QKD. We provide a basic introduction and rational for this network, discuss the February 2005 status of the various QKD hardware suites and software systems in the network, and describe our operational experience with the DARPA Quantum Network to date. We conclude with a discussion of our ongoing work.
The security of quantum key distribution against undetected eavesdropping depends on the key-sharing parties (Alice and Bob) making a probabilistic estimate of the ignorance of a maximally adept eavesdropper (Eve) concerning sifted, error-free bits from which Alice and Bob distill a key. For individual attacks on the BB84 protocol, we show how to generalize the defense function and the defense frontier of Slutsky et al. to take advantage of Cachin’s analysis of Renyi entropy of arbitrary order R, here called R-entropy. For a special case of an attack uniform over all bits, an optimum defense frontier is displayed. Evidence is discussed for the conjecture that this defense frontier in terms of R-entropy holds good not just for uniform attacks but for all individual attacks on BB84.
We also show how the entropy estimate fits in to the full suite of key-distillation protocols in a QKD system, in particular how it relates to privacy amplification. After privacy amplification, Eve will have, with high probability, no information about the remaining bits. By choosing the optimal Rényi order R, we can distill secure bits in the presence of a significantly higher error rate.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.