Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the fourth medium-class mission (M4) of the ESA’s Cosmic Vision Program. Its launch is planned for 2029. Ariel will observe a large and well selected sample of transiting gas giants, neptunes and super-earths around a wide range of host star types, with the objective to study planetary atmospheres and to understand composition and evolving processes of the planetary systems. A Structural, Thermal, and Optical Performance (STOP) analysis is conducted at Payload level to estimate the thermo-elastic induced degradation of the system performance for a number of selected environmental load cases. In particular, this document presents the general approach followed and the results of the optical design analysis performed to predict the performance of the Ariel Telescope Assembly for the in-flight operational cases during Cycle C-1.
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the adopted M4 mission of ESA “Cosmic Vision” program. Its purpose is to conduct a survey of the atmospheres of known exoplanets through transit spectroscopy. Launch is scheduled for 2029. Ariel scientific payload consists of an off-axis, unobscured Cassegrain telescope feeding a set of photometers and spectrometers in the waveband between 0.5 and 7.8 µm, and operating at cryogenic temperatures. The Ariel Telescope consists of a primary parabolic mirror with an elliptical aperture of 1.1 m of major axis, followed by a hyperbolic secondary, a parabolic recollimating tertiary and a flat folding mirror. The Primary mirror is a very innovative device made of lightened aluminum. Aluminum mirrors for cryogenic instruments and for space application are already in use, but never before now it has been attempted the creation of such a large mirror made entirely of aluminum: this means that the production process must be completely revised and fine-tuned, finding new solutions, studying the thermal processes and paying a great care to the quality check. By the way, the advantages are many: thermal stabilization is simpler than with mirrors made of other materials based on glass or composite materials, the cost of the material is negligeable, the shape may be free and the possibility of making all parts of the telescope, from optical surfaces to the structural parts, of the same material guarantees a perfect alignment at whichever temperature. The results and expectations for the flight model are discussed in this paper.
The Atmospheric Remote-Sensing Infrared Exoplanet Large Survey (Ariel) is the M4 mission adopted by ESA's "Cosmic Vision" program. Its launch is scheduled for 2029. The mission aims to study exoplanetary atmospheres on a target of ∼ 1000 exoplanets. Ariel's scientific payload consists of an off-axis, unobscured Cassegrain telescope. The light is directed towards a set of photometers and spectrometers with wavebands between 0.5 and 7.8 μm and operating at cryogenic temperatures. The Ariel Space Telescope consists of a primary parabolic mirror with an elliptical aperture of 1.1· 0.7 m, all bare aluminum. To date, aluminum mirrors the size of Ariel's primary have never been made. In fact, a disadvantage of making mirrors in this material is its low density, which facilitates deformation under thermal and mechanical stress of the optical surface, reducing the performance of the telescope. For this reason, studying each connection component between the primary mirror and the payload is essential. This paper describes, in particular, the development, manufacturing, and testing of the Flexure Hinges to connect Ariel's primary Structural Model mirror and its optical bench. The Flexure Hinges are components already widely used for space telescopes, but redesigning from scratch was a must in the case of Ariel, where the entire mirror and structures are made of aluminum. In fact, these flexures, as well as reducing the stress due to the connecting elements and the launch vibrations and maintaining the alignment of all the parts preventing plastic deformations, amplified for aluminum, must also have resonance frequencies different from those usually used, and must guarantee maximum contact (tolerance in the order of a micron) for the thermal conduction of heat. The entire work required approximately a year of work by the Ariel mechanical team in collaboration with the industry.
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the adopted M4 mission in the framework of the ESA “Cosmic Vision” program. Its purpose is to survey the atmospheres of known exoplanets through transit spectroscopy. The launch is scheduled for 2029. The scientific payload consists of an off-axis, unobscured Cassegrain telescope feeding a set of photometers and spectrometers in the waveband 0.5-7.8 µm and operating at cryogenic temperatures (55 K). The Telescope Assembly is based on an innovative fully aluminium design to tolerate thermal variations to avoid impacts on the optical performance; it consists of a primary parabolic mirror with an elliptical aperture of 1.1 m (the major axis), followed by a hyperbolic secondary that is mounted on a refocusing system, a parabolic re-collimating tertiary and a flat folding mirror directing the output beam parallel to the optical bench. An innovative mounting system based on 3 flexure hinges supports the primary mirror on one of the optical bench sides. The instrument bay on the other side of the optical bench houses the Ariel IR Spectrometer (AIRS) and the Fine Guidance System / NIR Spectrometer (FGS/NIRSpec). The Telescope Assembly is in phase B2 towards the Critical Design Review; the fabrication of the structural and engineering models has started; some components, i.e., the primary mirror and its mounting system are undergoing further qualification activities. This paper aims to update the scientific community on the progress concerning the development, manufacturing and qualification activity of the ARIEL Telescope Assembly.
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is ESA’s M4 mission of the “Cosmic Vision” program, with launch scheduled for 2029. Its purpose is to conduct a survey of the atmospheres of known exoplanets through transit spectroscopy. Ariel is based on a 1 m class telescope optimized for spectroscopy in the waveband between 1.95 and 7.8 µm, operating at cryogenic temperatures in the range 40–50 K. The Ariel Telescope is an off-axis, unobscured Cassegrain design, with a parabolic recollimating tertiary mirror and a flat folding mirror directing the output beam parallel to the optical bench. The secondary mirror is mounted on a roto-translating stage for adjustments during the mission. The mirrors and supporting structures are all realized in an aerospace-grade aluminum alloy T6061 for ease of manufacturing and thermalization. The low stiffness of the material, however, poses unique challenges to integration and alignment. Care must be therefore employed when designing and planning the assembly and alignment procedures, necessarily performed at room temperature and with gravity, and the optical performance tests at cryogenic temperatures. This paper provides a high-level description of the Assembly, Integration and Test (AIT) plan for the Ariel telescope and gives an overview of the analyses and reasoning that led to the specific choices and solutions adopted.
ARIEL (Atmospheric Remote-sensing InfraRed Large-survey) is a medium-class mission of the European Space Agency, part of the Cosmic Vision program, whose launch is foreseen by early 2029. ARIEL aims to study the composition of exoplanet atmospheres, their formation and evolution. The ARIEL’s target will be a sample of about 1000 planets observed with one or more of the following methods: transit, eclipse and phase-curve spectroscopy, at both visible and infrared wavelengths simultaneously. The scientific payload is composed by a reflective telescope having a 1m-class elliptical primary mirror, built in solid Aluminium, and two focal-plane instruments: FGS and AIRS. FGS (Fine Guidance System)1 has the double purpose, as suggested by its name, of performing photometry (0.50-0.55 μm) and low resolution spectrometry over three bands (from 0.8 to 1.95 µm) and, simultaneously, to provide data to the spacecraft AOCS (Attitude and Orbit Control System) with a cadence of 10 Hz and contributing to reach a 0.02 arcsec pointing accuracy for bright targets. AIRS (ARIEL InfraRed Spectrometer) instrument will perform IR spectrometry in two wavelength ranges: between 1.95 and 3.9 μm (with a spectral resolution R < 100) and between 3.9 and 7.8 μm with a spectral resolution R < 30. This paper provides the status of the ICU (Instrument Control Unit), an electronic box whose purpose is to command and supply power to AIRS (as well as acquire science data from its two channels) and to command and control the TCU (Telescope Control Unit).
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the adopted M4 mission of ESA “Cosmic Vision” program. Its purpose is to conduct a survey of the atmospheres of known exoplanets through transit spectroscopy. Launch is scheduled for 2029. Ariel scientific payload consists of an off-axis, unobscured Cassegrain telescope feeding a set of photometers and spectrometers in the waveband between 0.5 and 7.8 μm, and operating at cryogenic temperatures. The Ariel Telescope consists of a primary parabolic mirror (M1) with an elliptical aperture of 1.1 m of major axis and 0.7 m of minor axis, followed by a hyperbolic secondary (M2) , a parabolic recollimating tertiary (M3) and a flat folding mirror (M4). The Primary mirror is a very innovative device made of lightened aluminum. Aluminum mirrors for cryogenic instruments and for space application are already in use, but never before now it has been attempted the creation of such a large mirror made entirely of aluminum: this means that the production process must be completely revised and finetuned, finding new solutions, studying the thermal processes and paying a great care to the quality check. By the way, the advantages are many: thermal stabilization is simpler than with mirrors made of other materials based on glass or composite materials, the cost of the material is negligable, the shape may be free and the possibility of making all parts of the telescope, from optical surfaces to the structural parts, of the same material guarantees a perfect alignment at whichever temperature. This paper describes the methodology and preliminary results of this manufacturing process and discusses future steps.
The primary mirror of the Ariel space telescope (an ESA M class mission aimed at the study of exoplanets, scheduled for launch in 2029) is an elliptical off-axis paraboloid. Like the entire telescope, it is built of aluminum. As a massive part of the payload, as well as one of the most delicate components of the telescope, this mirror has to be accurately designed, in order to minimize its mass while not degrading its optical performances. This paper discusses the optimization study of the primary mirror of Ariel. Starting from its optical and geometrical specifications, we have run an iterative process based on FEA dynamic analyses, in order to compute the first ”free-free” eigenfrequencies while varying the three fundamental parameters of the honeycomb structure of the mirror - the thickness of the ribs, the outer edge, and the reflecting surface. Later, the optimization routine has been improved by adding the honeycomb geometry as a variable parameter. As a result, the best configurations is identified as the ones giving the higher ratios of the first relevant eigenfrequency divided by the mass.
KEYWORDS: Field programmable gate arrays, Electronics, Data processing, Power supplies, Image processing, Infrared imaging, Space telescopes, Exoplanets, Infrared spectroscopy, Photometry
ARIEL is an ESA mission whose scientific goal is to investigate exoplanetary atmospheres. The payload is composed by two instruments: AIRS (ARIEL IR Spectrometer) and FGS (Fine Guidance System). The FGS detection chain is composed by two HgCdTe detectors and by the cold Front End Electronics (SIDECAR), kept at cryogenic temperatures, interfacing with the F-DCU (FGS Detector Control Unit) boards that we will describe thoroughly in this paper. The F-DCU are situated in the warm side of the payload in a box called FCU (FGS Control Unit) and contribute to the FGS VIS/NIR imaging and NIR spectroscopy. The F-DCU performs several tasks: drives the detectors, processes science data and housekeeping telemetries, manages the commands exchange between the FGS/DPU (Data Processing Unit) and the SIDECARs and provides high quality voltages to the detectors. This paper reports the F-DCU status, describing its architecture, the operation and the activities, past and future necessary for its development.
Ariel (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is an ESA M class mission aimed at the study of exoplanets. The satellite will orbit in the lagrangian point L2 and will survey a sample of 1000 exoplanets simultaneously in visible and infrared wavelengths. The challenging scientific goal of Ariel implies unprecedented engineering efforts to satisfy the severe requirements coming from the science in terms of accuracy. The most important specification – an all-Aluminum telescope – requires very accurate design of the primary mirror (M1), a novel, off-set paraboloid honeycomb mirror with ribs, edge, and reflective surface. To validate such a mirror, some tests were carried out on a prototype – namely Pathfinder Telescope Mirror (PTM) – built specifically for this purpose. These tests, carried out at the Centre Spatial de Liège in Belgium – revealed an unexpected deformation of the reflecting surface exceeding a peek-to-valley of 1µm. Consequently, the test had to be re-run, to identify systematic errors and correct the setting for future tests on the final prototype M1. To avoid the very expensive procedure of developing a new prototype and testing it both at room and cryogenic temperatures, it was decided to carry out some numerical simulations. These analyses allowed first to recognize and understand the reasoning behind the faults occurred during the testing phase, and later to apply the obtained knowledge to a new M1 design to set a defined guideline for future testing campaigns.
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the adopted M4 mission in the framework of the ESA “Cosmic Vision” program. Its purpose is to conduct a survey of the atmospheres of known exoplanets through transit spectroscopy. Launch is scheduled for 2029. Ariel scientific payload consists of an off-axis, unobscured Cassegrain telescope feeding a set of photometers and spectrometers in the waveband between 0.5 and 7.8 µm and operating at cryogenic temperatures (55 K). The Telescope Assembly is based on an innovative fully-aluminum design to tolerate thermal variations avoiding impacts on the optical performance; it consists of a primary parabolic mirror with an elliptical aperture of 1.1 m of major axis, followed by a hyperbolic secondary that is mounted on a refocusing system, a parabolic re-collimating tertiary and a flat folding mirror directing the output beam parallel to the optical bench. An innovative mounting system based on 3 flexure-hinges supports the primary mirror on one side of the optical bench. The instrument bay on the other side of the optical bench houses the Ariel IR Spectrometer (AIRS) and the Fine Guidance System / NIR Spectrometer (FGS/NIRSpec). The Telescope Assembly is in phase B2 towards the Preliminary Design Review to start the fabrication of the structural model; some components, i.e., the primary mirror, its mounting system and the refocusing mechanism, are undergoing further development activities to increase their readiness level. This paper describes the design and development of the ARIEL Telescope Assembly.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.