A significant amount of breast cancer research in recent years has been devoted to novel means of tumor detection such as MR contrast enhancement, electrical impedance tomography, microwave imaging, and elastography. Many of these detection methods involve deforming the breast. Often, these deformed images need to be correlated to anatomical images of the breast in a different configuration. In the case of our elastography framework, a series of comparisons between the pre- and post-deformed images needs to be performed. This paper presents an automatic method for determining correspondence between images of a pendant breast and a partially-constrained, compressed breast. The algorithm is an extension to the symmetric closest point approach of Papademetris et al. However, because of the unique deformation and shape change of a partially-constrained, compressed breast, the algorithm was modified through the use of iterative closest point (ICP) registration on easily identifiable sections of the breast images and through weighting the symmetric nearest neighbor correspondence. The algorithm presented in this paper significantly improves correspondence determination between the pre- and post-deformed images for a simulation when compared to the original Papademetris et al.'s symmetric closest point criteria.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.