Since the operating mode of 1.55 μm AlN/GaN-based intersubband photodetectors is based on optical rectification, both
the excited state lifetime and the lateral displacement of the carriers play an important role for performance optimization.
We thus show here results of an improved detector generation based on a novel type of active region. Thanks to the use
of quantum dots instead of quantum wells, a factor of 60 could be gained in terms of maximum responsivity. In addition,
the maximum performance was achieved at a considerably higher temperature of 160 K instead of 80 K as typically seen
for quantum wells.
An overview of quantum cascade detector technology for the near- and mid-infrared wavelength range will be given.
Thanks to photovoltaic instead of photoconductive operation, quantum cascade detectors offer great opportunities in
terms of detection speed, room temperature operation, and detectivity. Besides some crucial issues dealing with
fabrication and general characteristics, some possibilities for performance improvement will also be briefly presented. In
a theory section, some basic considerations adopted from photoconductive detectors confirm the necessity of various
trade-offs for the optimization of such devices. Nevertheless, we will show several possible measures to push the key
performance figures of these detectors closer to their physical and technological limits.
We report on the fabrication and characterization of GaN/AlN based superlattice structures with intersubband transition
wavelengths in the optical telecom range. The devices consist typically of 40 periods of 1.5 nm thick Si-doped GaN
wells and up to 15 nm thick AlN barriers. The photovoltaic mode of operation has allowed us to test these detectors at
room temperature and for frequencies ranging into the multiple GHz region. Substantial performance improvements are
expected if proper high frequency mounting and processing techniques will be used in the future.
An optically pumped ZnO distributed feedback laser operating at 383 nm has been designed, fabricated and
characterized. Single mode operation was observed for a wide temperature range between 10 and 270 K. In order to
avoid technologically difficult etching of ZnO, a 3rd order diffraction grating was dry-etched into an additional 120 nm-thick
Si3N4 layer deposited on the ZnO active region. The spectral linewidth of the laser emission was 0.4 nm, whereas
an optical pump threshold intensity of 0.12 MW/cm2 and a peak output power of 14 mW were seen. The temperature
tuning coefficient of the ZnO refractive index was determined from wavelength vs. temperature measurements; a value
of 9 × 10-5 K-1 was found, in good agreement with literature values.
Room temperature, continuous wave (CW) operation of distributed feedback (DFB) quantum cascade lasers with widely
spaced operation frequencies is reported. The relatively small temperature tuning range of a single device, smaller or
equal to approximately 1 % of the wavelength, usually limits their efficiency for spectroscopic investigations. By using a
bound-to-continuum active region to create a broad gain spectrum and monolithic integration of different DFB gratings,
we achieved high-performance devices with single-mode emission between 7.7 and 8.3 &mgr;m at a temperature of +30 °C.
This frequency span corresponds to 8 % of the center frequency. The maximum CW operation temperature achieved was
63 °C at the gain center and as much as 35 °C and 45 °C, respectively, at the limits of the explored wavelength range.
We report on the characteristics of two InP-based quantum cascade detectors (QCDs) whose responses are centered at 5.35 and 9 μm. The working principle is based on a vertical intersubband transition followed by a carefully designed extraction cascade, which is adapted to the LO-phonon energy. This device architecture leads to 10 K responsivities R of 8 and 26 mA/W and background limited detectivities D*BLIP of 1.7 x 1010 and 0.9 x 1010 jones, for the 5.35 μm and the 9 μm device, respectively. The temperature up to which background limited operation is seen is 115 K for the 5.35 μm device and roughly 65 K for the 9 μm detector. Designed for zero bias operation, QCDs produce a minimal dark current and therefore suffer very little from dark current noise. In addition, capacitance saturation at long integration times can be avoided, making them ideal devices for large focal plane arrays. The 5.35 μm detector was tested at high speed and room temperature. An optical beating signal generated by two slightly de-tuned singlemode quantum cascade lasers was used to test the detector's response at frequencies of up to 23 GHz.
In this work, we investigate the absorption distribution in InGaN-on-sapphire based light-emitting diodes (LEDs). We observed by photothermal deflection spectroscopy (PDS) and transmission measurements that most of the absorption takes place in a thin layer close to the sapphire substrate. The lateral intensity distribution in the surrounding of LED emitters is determined by the photocurrent measurement method. Based on the observations by PDS and transmission, a model for the lateral light propagation in the LED-wafer containing also a thin, strong absorbing layer is presented. It is shown that interference of the mode profiles with the absorbing layer leads to different modal absorption which explains the non-exponential intensity distribution. We are able to estimate the optical thickness of the absorbing layer to be 75 nm. Furthermore, this layer can be identified as one of the major loss mechanism in InGaN-LEDs grown on sapphire substrate due to the large absorption coefficient which is effective at the emission wavelength.
Continuous wave (CW) operation of quantum cascade lasers is reported up to a temperature of 312 K. The junction down mounted devices were designed as buried heterostructure lasers with high-reflection coatings on both facets. This resulted in CW operation at an emission wavelength of 9.1μm with an optical power ranging from 17 mW at 293 K to 3 mW at 312 K. A distributed feedback type device was fabricated and tested as well. It showed CW singlemode operation up to 260 K. These results demonstrate the potential of quantum cascade lasers as CW mid-infrared light sources for high-resolution spectroscopy and free space telecommunication systems.
Continuous wave operation of quantum cascade lasers is reported up to a temperature of 311 K. Fabry-Perot and DFB devices were fabricated as buried heterostructure lasers with high-reflection facet coatings. Junction-down mounted FP-lasers emitted up to 17 mW and 3 mW of optical power per facet under continuous wave operation at 292 K and 311 K, respectively. The DFB-devices could be operated up to 253 K on a thermoelectric cooler at an emission frequency of 1114 cm-1 with a side mode suppression rate better than 30 dB. Grating-coupled external cavity quantum cascade lasers based on a bound-to-continuum active region featuring a broad gain spectrum demonstrated frequency tuning of ~10% from 1036 cm-1 to 1142 cm-1 with average output power between 0.15 and 0.85 mW under pulsed operation at room temperature.
We report the application of quantum cascade (QC) lasers to measurement of atmospheric trace gases in both closed path and open path configurations. The QC laser, a recently available commercial device, is Peltier cooled and pulsed, with emission near 965 cm-1. We use direct absorption with a rapid sweep integration and spectral fits to derive absolute concentrations from tabulated line parameters without calibration. In the closed path configuration, with absorption in a long pathlength multipass cell (210 m, 50 Torr), we examined laser line widths and sensitivity limits. We measured ammonia with a precision of 0.05 nmole/mole (0.05 ppbv) RMS at 1 Hz, limited by detector noise. The laser linewith was 0.007 cm-1 HWHM, based on measurements of ethylene absorption line shapes with a current pulse width of ~14 ns. In the open path configuration, we measured ammonia in the exhaust of automobiles driving through a probe beam. Atmospheric pressure line broadening and turbulence limit the sensitivity, giving a column density noise level at 20 Hz of 1.4 ppm-m. We observed ammonia column densities up to 40 ppm-m in the exhaust plumes. In future systems we will include a CO2 channel, allowing normalization to fuel use rate.
Physics and applications of recent quantum cascade laser active region designs are discussed. Specifically, the use of bound-to-continuum and two-phonon resonance active regions for high temperature, high duty cycle operation is reviewed. Threshold current densities as low as 3kA/cm2 at T=300K, operation with a peak power of 90mW at 425K, and single mode, high power operation up to temperatures above 330K at (lambda) approximately equals 16micrometers are demonstrated. QC lasers able to operate at high duty cycles (50%) on a Peltier cooler were used in a demonstration of a 300MHz free space optical link between two buildings separated by 350m.
Recent developments in the research in quantum cascade laser technology in university of Neuchatel are reviewed. We report operation of quantum cascade lasers at high temperature (up to 10 mW peak power at 90 degrees Celsius) and of distributed feedback quantum cascade lasers with single-mode surface emission. New results in the investigation of mid-IR emission from InGaN/GaN LED's are also discussed.
We present a study on a novel method for the determination of the quality factor and the cavity loss in semiconductor lasers. The method we use involves Fourier analysis of the Fabry-Perot mode spectrum when operating the device below lasing threshold. The observation of the decay rate of higher order harmonics in the Fourier analysis of the spectra allows us to determine the amount of cavity propagation loss/gain. As an illustrative example, a Fourier analysis on experimental data for lasers fabricated in the AlGaAs material system will be given. In addition to the measurements on propagation loss/gain, this method allowed also the identification of the density and strength of intra-cavity scattering centers in optically pumped AlGaInN lasers. This is an important capability for the fabrication of blue diode lasers in the gallium-nitride material system.
We present two monolithically integrated optical sensor systems based on semiconductor photonic integrated circuits. These compact, robust and highly functional transducers perform all necessary optical and electro-optical functions on-chip; extension to multi-sensor arrays is easily envisaged. A monolithic Michelson interferometer for high-resolution displacement measurement and a monolithic Mach-Zehnder interferometer for refractometry are discussed.
Contactless optical displacement measurement has the potential for a variety of industrial and scientific applications. For highly accurate displacement measurements at distances below 1 m, interferometric methods are preferred over most other methods. This is mainly because of the good resolution and the possibility of doing the measurements in real-time. Furthermore, the use of direct bandgap semiconductor materials also enables the fabrication of a compact interferometer-based device which unites all necessary components, including the light emitter, on a single chip. In this paper, a monolithically integrated optical displacement sensor fabricated in the GaAs/AlGaAs material system is reported. This single chip microsystem is configured as a double Michelson interferometer and comprises a distributed Bragg reflector laser, photodetectors, phase shifters and waveguide couplers. In the course of this paper, we will also briefly discuss possible scientific and industrial applications of such devices.
The utilization of visible laser diodes for laser printing is discussed. First, the characteristics of a multiple- element array of single-mode, individually-addressed red (AlGaInP) laser diodes is described. The benefit of shorter- wavelength blue lasers is then evaluated. Finally, towards the realization of a blue laser diode, we describe results for AlGaInN and its heterostructures, which have been grown by OMVPE and characterized, including electrical injection and optical pumping of InGaN/AlGaN heterostructures.
We discuss the fabrication of a monolithically integrated optical displacement sensors using III-V semiconductor technology. The device is configured as a Michelson interferometer and consists of a distributed Bragg reflector laser, a photodetector and waveguides forming a directional coupler. Using this interferometer, displacements in the 100 nm range could be measured at distances of up to 45 cm. We present fabrication, device results and characterization of the completed interferometer, problems, limitations and future applications will also be discussed.
Semiconductor technology, when applied to the design and fabrication of integrated optical sensors, will yield structures of improved performance and reduced cost. Key advances in this area employ two quantum well-based effects, the quantum confined Stark effect and selective quantum well intermixing, the use of which enable the monolithic integration and enhanced functionality of semiconductor-based optical sensor circuits. In this paper, we discuss the application of these effects to the fabrication of semiconductor devices useful for integrated optical sensors based on waveguide interferometry. The quantum confined Stark effect allows us to electrically define the absorption edge of detectors and permits the fabrication of high- efficiency phase modulators. By the use of different surface dielectrics, quantum well intermixing is employed to generate transparent and absorbing regions on a single substrate. Current and future applications are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.