Convolutional Neural Networks (CNN) have dramatically boosted the performance of various computer vision tasks except visual tracking due to the lack of training data. In this paper, we pre-train a deep CNN offline to classify the 1 million images from 256 classes with very leaky non-saturating neurons for training acceleration, which is transformed to a discriminative classifier by adding an additional classification layer. In addition, we propose a novel approach for combining increasingly our CNN classifiers in a “cascade” structure through a modification of the AdaBoost framework, and then transfer the selected discriminative features from the ensemble of CNN classifiers to the robust visual tracking task, by updating online to robustly discard the background regions from promising object-like region to cope with appearance changes of the target. Extensive experimental evaluations on an open tracker benchmark demonstrate outstanding performance of our tracker by improving tracking success rate and tracking precision on an average of 9.2% and 13.9% at least over other state-of-the-art trackers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.