Histological studies provide cellular insights into tissue architecture and have been central to phenotyping and biological discovery. Synchrotron X-ray micro-tomography of tissue, or “X-ray histotomography”, yields three-dimensional reconstruction of fixed and stained specimens without sectioning. These reconstructions permit the computational creation of histology-like sections in any user-defined plane and slice thickness. Furthermore, they provide an exciting new basis for volumetric, computational histological phenotyping at cellular resolution. In this paper, we demonstrate the computational characterization of the zebrafish central nervous system imaged by Synchrotron X-ray micro-CT through the classification of small cellular neighborhood volumes centered at each detected nucleus in a 3D tomographic reconstruction. First, we propose a deep learning-based nucleus detector to detect nuclear centroids. We then develop, train, and test a Convolutional Neural Network architecture for automatic classification of brain nuclei using five different neighborhood sizes, which correspond to 8, 12, 16, 20 and 24 isotropic voxel dimensions respectively. We show that even with small cell neighborhoods, our proposed model is able to characterize brain nuclei into the major tissue regions with a Jaccard score of 74.29% and F1 score of 85.34%. Using our detector and classifier, we obtained very good results for fully segmenting major zebrafish brain regions in the 3D scan through patch wise labeling of cell neighborhoods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.