The paper illustrates both review and original simulation results obtained via the modelling of different set-ups based on optical microresonators for applications in optical sensing, lasing and spectroscopy. Passive microbubbles and microspheres coupled via long period fiber gratings (LPGs) and tapered fibers are designed and/or constructed for sensing of biological fluids in the near infrared (NIR) wavelength range. Rare earth doped chalcogenide glass integrated microdisks are designed for active sensing in the medium infrared (MIR) wavelength range. A home-made numerical code modelling the optical coupling and the active behavior via rate equations of ion population is employed for a realistic design, by taking into account the most important active phenomena in rare earths, such as the absorption rates, the stimulated emission rates, the amplified spontaneous emission, the lifetime and branching ratios, the ion-ion energy transfers and the excited state absorption. Optical coupling is obtained by employing ridge waveguides, for micro-disks, and tapered fibers, for microspheres and microbubbles. Different dopant rare earths as Erbium (Er3+) and Praseodymium (Pr3+) are considered.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.