Single-photon subtraction (SPS) is useful for engineering optical quantum states and can be accomplished experimentally by heralding on the detection of one photon in the output port of a beamsplitter. Alternatively, conditioning on zero reflected photons modifies states by “zero-photon subtraction” (ZPS). Here we experimentally demonstrate that ZPS reduces the mean photon number of superpositions/mixtures of Fock states. The observed trends in attenuation show a dependence on the Mandel Q parameter for various input states, resulting in complementary behavior between SPS and ZPS. Theoretical results also show higher-order effects on the photon number distribution, beyond reduction in mean photon number.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.