Accurate characterization of atmospheric turbulence is useful for performance assessment of optical systems operating in real environments and for designing systems to mitigate turbulence effects. Irradiance-based techniques such as scintillometry, suffer from saturation, and hence commercial scintillometers have limited operational ranges. A method to estimate turbulence parameters, such as path weighted Cn2 and Fried’s coherence diameter r0 from turbulence-induced random, differential motion of extended features in the time-lapse imagery of a distant target is presented. Since the method is phase-based, it can be applied to longer paths. It has an added advantage of remotely sensing turbulence without the need for deployment of sensors at the target location. The approach uses a derived set of path weighting functions that drop to zero at both ends of the imaging path, the peak location depending on the size of the imaging aperture, and the relative sizes and separations of the features whose motions are being tracked. Using different sized features separated by different amounts, a rich set of weighting functions can be obtained. These weighting functions can be linearly combined to approximate a desired weighting function such as that of a scintillometer or that of r0 in inhomogeneous turbulence. The time-lapse measurements can thus mimic the measurements of a scintillometer or any other instrument. The method is applied to images captured along two different paths, and the estimates are compared to co-located scintillometer measurements.
This study uses the split-step beam propagation method (BPM) to look at the Monte Carlo statistics associated with increasing strengths of turbulence and steady state thermal blooming (SSTB). To help quantify the strength of the turbulence and SSTB, the analysis makes use of two parameters: the analytical log-amplitude variance and the distortion number. These parameters simplify greatly given horizontal-propagation paths with constant index-of-refraction structure coefficients and extinction coefficients. As such, the goal throughout is to characterize the impact of turbulence thermal blooming interaction (TTBI) in terms of multiple metrics of interest. These metrics include the spatial-structure function, magnitude of the complex degree of coherence, and log-amplitude variance. The results show that the presence of thermal blooming causes the log- amplitude variance to increase significantly from the theoretical value. This outcome leads to an interesting trade-space analysis with respect to TTBI.
In recent times, there has been a growing interest in measuring atmospheric turbulence over long paths. Irradiance based techniques such as scintillometry, suffer from saturation and hence commercial scintillometers have limited operational ranges. In the present work, a method to estimate path weighted Cn2 from turbulence induced random, differential motion of extended features in the time-lapse imagery of a distant target is presented. Since the method is phase based, it can be applied to longer paths. The method has an added advantage of remotely sensing turbulence without the need for deployment of sensors at the target location. The imaging approach uses a derived set of path weighting functions that drop to zero at both ends of the imaging path, the peak location depending on the size of the imaging aperture and the relative sizes and separations of the features whose motions are being tracked. For sub-aperture sized features and separations, the peaks of the weighting functions are closer to the target end of the path. For bigger features and separations, the peaks are closer to the camera end. Using different sized features separated by different amounts, a rich set of weighting functions can be obtained. These weighting functions can be linearly combined to produce a desired weighting function such as that of a scintillometer or that of r0. The time-lapse measurements can thus mimic the measurements of a scintillometer or any other instrument. The method is applied to both simulated and experimentally obtained imagery and some validation results with a scintillometer is shown as well.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.