We report on the breadboard model of a polarization modulator unit (PMU) using a sapphire-based achromatic half-wave plate (HWP) for the low-frequency telescope (LFT) of LiteBIRD, the JAXA-led space mission to probe cosmic inflation by observing the polarization of the cosmic microwave background. The PMU is a key component to reduce 1/f noise and the systematic effects between the two orthogonal polarized detectors. For the HWP, we glued together the surfaces of five 330 mm diameter sapphire plates using hydro catalysis bonding, working as HWP in LFT bands. We also fabricated anti-reflective sub-wavelength structures using ultra-short pulsed laser ablation. For the rotation mechanism, we use a superconducting magnetic bearing (SMB) and contactless synchronous motor to levitate, and rotate the HWP without any contact. Optical measurements show that fabricated HWP archives broadband transmission and polarization efficiency to obtain a sensitivity close to an ideal HWP. We investigate and characterize each component of the rotation mechanism, SMB, encoder to measure the rotation angle of HWP, and the holder mechanism. We improved the design of the rotation mechanism and reduced the total mass from 34.7 kg to 21.7 kg, which is significant reduction for the mass limited satellite mission. The knowledge of characterization for each component can be scaled to the size of the flight model of 480 mm diameter.
LiteBIRD, the next-generation cosmic microwave background (CMB) experiment, aims for a launch in Japan’s fiscal year 2032, marking a major advancement in the exploration of primordial cosmology and fundamental physics. Orbiting the Sun-Earth Lagrangian point L2, this JAXA-led strategic L-class mission will conduct a comprehensive mapping of the CMB polarization across the entire sky. During its 3-year mission, LiteBIRD will employ three telescopes within 15 unique frequency bands (ranging from 34 through 448 GHz), targeting a sensitivity of 2.2 μK-arcmin and a resolution of 0.5° at 100 GHz. Its primary goal is to measure the tensor-toscalar ratio r with an uncertainty δr = 0.001, including systematic errors and margin. If r ≥ 0.01, LiteBIRD expects to achieve a > 5σ detection in the ℓ = 2–10 and ℓ = 11–200 ranges separately, providing crucial insight into the early Universe. We describe LiteBIRD’s scientific objectives, the application of systems engineering to mission requirements, the anticipated scientific impact, and the operations and scanning strategies vital to minimizing systematic effects. We will also highlight LiteBIRD’s synergies with concurrent CMB projects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.