It is well known that interferometers make great sensors. This is because phase is a magnitude that can be measured with very accurate precision and with a great dynamic range at the same time. Integrating these devices on a chip is very appealing because it can make the device much smaller, lighter, and affordable. However, this technology also poses some challenges, which can degrade performance with respect to free-space or fiber-based devices. In this work we overview these challenges and possible strategies to tackle them.
We demonstrate the automatic thermal alignment of photonic components within an integrated optical switch. The WDM optical switch involves switching elements, wavelength de-multiplexers, interleavers and monitors each one needing independent control. Our system manages rerouting of channels coming from four different directions, each carrying 12, 200GHz spaced, wavelengths into eight add/drop ports. The integrated device includes 12 interleavers, which can act either as optical de-interleavers to split the optical signal into odd and even channels or as optical interleavers that recombine the odd and even channels coming from the switching matrix. Integrated Ge photodiodes are placed in key positions within the photonic integrated circuit (PIC) are serve for monitoring. An electronic integrated circuit (EIC) drives the photonic elements by means of dedicated heating circuits (824 on-board heater control cells, 768 for the switching elements and 56 for the interleavers and the mux/de-mux) and reads out the Ge diodes photocurrent through TIAs. We applied a stochastic optimization algorithm to align the spectral response of the interleavers to the ITU grid. We exploit the thermo-optic effect to shift the interleavers pass-band in a desired spectral position. The interleavers are provided with dedicated metallic heaters that can be operated in order to tune the interleaver response, which is typically misaligned due to fabrication inaccuracies. The experimental setup is made of a tunable laser coupled with one input port of optical switch. The optimization algorithm is implemented via a software to drive the EIC till finding the best heating configuration (on the two branches of the interleaver) on the basis of the monitor diode-feedback. This way, the even and odd wavelengths input in the interleaver are directed toward the wanted lines within the switching matrix. Our method has been used for aligning the micro-ring based switching elements in the PIC as well. In that case, the integrated Ge photodiodes have been used to align the photonic components in the PIC in order to enable different pathways for the routing or the broadcasting operation of the optical switch. With no bias applied to the heaters of the switching elements, the optical signal is expected to be maximum at the through port. When the micro-ring heaters are biased, the feedback controller finds the best set of heating values that minimize the optical power at the through port of the switching node. This way, the optical signal is coupled in the drop port and the node is enabled for switching. The algorithm, implemented in LabVIEW, converges over multiple instances and it is robust against stagnation. This work aims at enabling the automatic reconfiguration/restoration of the whole WDW optical switch.
Distributed Acoustic Sensing (DAS) is a technology with interesting features for real-time safety and security monitoring applications, and constitutes a steadily growing share of the optical fiber sensing market. Recently, the quantitative measurement of disturbances using DAS schemes based on Phase-Sensitive Time Domain Reflectometry (Φ-OTDR) has become a focus of investigation. In this contribution, we propose and experimentally demonstrate a stable homodyne phase demodulation scheme in a fiber optic Φ-OTDR sensor using a double pulse probe and a direct detection receiver. We show that a carrier for the distributed dynamic phase change induced by an external perturbation can be generated by selective phase modulation of one of the probing pulses. The local phase is then retrieved from the backscattering signal using a demodulation technique robust against light intensity disturbances, which have been limiting factors in existing phase demodulation schemes. In addition, the method is independent of the phase modulation depth and does not require computationally costly multi-dimensional phase unwrapping algorithms necessary when using I-Q demodulation in DAS, and is a suitable candidate for analogue signal processing. We demonstrate the capacity of the sensor to measure the distributed dynamic phase change induced by a nonlinear actuator generating a 2 kHz perturbation at a distance of 1.5 km with an SNR of ~24 dB. The demodulated multi-frequency response is also shown to be consistent with one obtained using a point senor based on an FBG and a commercial reading unit.
Silicon photonics is becoming a consolidated technology, mainly in the telecom/datacom sector, but with a great potential in the chemical and biomedical sensor market too, mainly due to its CMOS compatibility, which allows massfabrication of huge numbers of miniaturized devices at a very low cost per chip. Integrated photonic sensors, typically based on resonators, interferometers, or periodic structures, are easy to multiplex as the light is confined in optical waveguides.
In this work, we present a silicon-photonic sensor capable of measuring refractive index and chemical binding of biomolecules on the surface, using a low-cost phase interrogation scheme. The sensor consists of a pair of balanced Mach-Zehnder interferometers with interaction lengths of 2.5 mm and 22 mm, wound to a sensing area of only 500 μm x500 μm. The phase interrogation is performed with a fixed laser and an active phase demodulation approach based on a phase generated carrier (PGC) technique using a phase demodulator integrated within the chip. No laser tuning is required, and the technique can extract the univocal phase value with no sensitivity fading. The detection only requires a photo-receiver per interferometer, analog-to-digital conversion, and simple processing performed in real-time. We present repeatable and linear refractive index measurements, with a detection limit down to 4.7·10-7 RIU. We also present sensing results on a chemically-functionalized sample, where anti-BSA to BSA (bovine serum albumin) binding curves are clearly visible for concentrations down to 5 ppm. Considering the advantages of silicon photonics, this device has great potential over several applications in the chemical/biochemical sensing industry.
In this paper we present an overview of the current efforts towards integration of Fiber Bragg Grating (FBG) sensor interrogators. Different photonic integration platforms will be discussed, including monolithic planar lightwave circuit technology, silicon on insulator (SOI), indium phosphide (InP) and gallium arsenide (GaAs) material platforms. Also various possible techniques for wavelength metering and methods for FBG multiplexing will be discussed and compared in terms of resolution, dynamic performance, multiplexing capabilities and reliability. The use of linear filters, array waveguide gratings (AWG) as multiple linear filters and AWG based centroid signal processing techniques will be addressed as well as interrogation techniques based on tunable micro-ring resonators and Mach-Zehnder interferometers (MZI) for phase sensitive detection. The paper will also discuss the challenges and perspectives of photonic integration to address the increasing requirements of several industrial applications.
We experimentally demonstrate the feasibility of Fiber Bragg Grating sensors interrogation using integrated unbalanced Mach-Zehnder Interferometers (MZI) and phase sensitive detection in silicon-on-insulator (SOI) platform. The Phase- Generated Carrier (PGC) demodulation technique is used to detect phase changes, avoiding signal fading. Signal processing allows us to extract the wavelength shift from the signal patterns, allowing accurate dynamic FBG interrogation. High resolution and low cost chips with multiple interrogators and photodetectors on board can be realized by exploiting the advantages of large scale fabrication capabilities of well-established silicon based industrial infrastructures. Simultaneous dynamic reading of a large number of FBG sensors can lead to large volume market applications of the technology in several strategic industrial fields. The performance of the proposed integrated FBG interrogator is validated by comparing with a commercial FBG readout based on a spectrometer and used as a reference.
In this paper, we experimentally demonstrate a hybrid distributed acoustic and temperature sensor (DATS) based on
Raman and coherent Rayleigh scattering processes in a standard singlemode fiber. A single commercial off-the-shelf
DFB laser and a common receiver block are used to implement a highly integrated hybrid sensor system with key
industrial applications. Distributed acoustic sensing and Raman temperature measurement are simultaneously performed
by exploiting cyclic Simplex pulse coding in a phase-sensitive OTDR and in Raman DTS using direct detection. Suitable
control and modulation of the DFB laser ensures inter-pulse incoherence and intra-pulse coherence, enabling accurate
long-distance measurement of vibrations and temperature with minimal post-processing.
We propose and experimentally demonstrate a Distributed Acoustic Sensor exploiting cyclic Simplex coding in a phase-sensitive OTDR on standard single mode fibers based on direct detection. Suitable design of the source and use of cyclic coding is shown to improve the SNR of the coherent back-scattered signal by up to 9 dB, reducing fading due to modulation instability and enabling accurate long-distance measurement of vibrations with minimal post-processing.
We propose and experimentally demonstrate a fully hybrid distributed sensing scheme that uses a single narrow-band laser to perform fast measurement of the BFS using BOTDA and simultaneous temperature measurement based on spontaneous Raman scattering over 10 km of single mode fiber. The use of cyclic pulse coding effectively reduces the pump peak power levels required for accurate Raman-based distributed temperature measurement, enhancing at the same time the speed of the BFS measurement in the BOTDA technique.
A simple configuration for achieving a radio frequency transparent 90° hybrid, for broadband QAM wireless systems
using silicon photonics is proposed. The device consists of a high Q ring resonator which induces an optical 90° phase
shift between two adjacent resonant wavelengths. When these optical carriers are modulated by an RF carrier the
resulting device behaves as an RF 90° hybrid. Numerical simulations of the phase shift were performed on a 40 GHz
carrier, and to demonstrate the frequency transparency phase shift simulations was also performed at a carrier frequency
of 60 GHz. One of the main applications of such a device is the generation of millimeter wave 10 Gb/s wireless based on
quadrature amplitude modulation.
We report on a novel organic/inorganic hybrid waveguide approach, which is composed of a cladding of extremely low
refractive index oxidized porous silicon formed on a bulk silicon substrate and of it, a polymeric
(polymethylmethacrylate) core doped with a visible laser dye (Nile-Blue) was deposited by spin coating.
The waveguiding properties of the structures have been characterised by means of the m-line technique, demonstrating
that the use of oxidized porous silicon as a cladding can considerably improve the mode confinement factor of single-mode
waveguides. The low refractive index achievable in the cladding (n=1.16) allows forming waveguides with a low
index polymer cores.
Variable stripe length (VSL) measurements have been also performed in order to characterise the amplification
properties of the waveguides. We demonstrate a clear transition from losses to gain at 694nm with a pump threshold of
28mJ/cm2. Values of net optical gain up to 104dB/cm have been measured at this wavelength.
We report on optical analogues of well-known electronic phenomena such as Bloch oscillations and electrical Zener breakdown. We describe and detail the experimental observation of Bloch oscillations and resonant Zener tunneling of light waves in static and time-resolved transmission measurements performed on optical superlattices. Optical superlattices are formed by one-dimensional photonic structures (coupled microcavities) of high optical quality and are specifically designed to represent a tilted photonic crystal band. In the tilted bands condition the miniband of degenerate cavity modes turns into an optical Wannier-Stark ladder (WSL). This allows an ultrashort light pulse to bounce between the tilted photonic band edges and hence to perform Bloch oscillations, the period of which is defined by the frequency separation of the WSL states. When the superlattice is designed such that two minibands are formed within the stop band, at a critical value of the tilt of photonic bands the two WSLs couple within the superlattice structure. This results in a formation of a resonant tunneling channel in the minigap region, where the light transmission boosts from 0.3% to over 43%. The latter case describes the resonant Zener tunneling of light waves.
We present an experimental work on porous silicon-based optical devices. Notch filters and planar waveguides are fabricated and characterized. Three different types of filters are shown, the first one is a stop band filter in the 1.5 micron region, where improvements have been performed (smoothing of the index profile, apodization and index matching). The second is a double Notch filter in the IR range, which blocks two different frequencies. Finally Notch filters in the visible range are shown, where porous silicon has been completely oxidized. Double layer waveguides are fabricated and characterized by atomic force microscopy, luminescence and prism coupling techniques. All the results shown are compared with numerical calculations. The photoluminescence changes and the refractive index variations for different annealing times are modeled in terms of oxidation of silicon and slow condensation of the porous structure.
We have studied the properties of p+-type doped porous silicon, formed by electrochemical etching, when is left in presence of the electrolyte for different post-etching times. Using an interferometric technique, we monitored the formation of the porous silicon layer during the electrochemical treatment as well as the change of its porosity during the post-etch process due to a chemical dissolution mechanism. These data are complemented with a study of the photoluminescence modification for different post-etching times.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.