KEYWORDS: Visualization, Magnetic resonance imaging, Human-machine interfaces, In vivo imaging, MATLAB, Prostate, Reconstruction algorithms, Computer aided diagnosis and therapy, Prostate cancer, Medical imaging
KEYWORDS: Signal attenuation, Visualization, Reconstruction algorithms, Expectation maximization algorithms, Single photon emission computed tomography, Point spread functions, Computer programming, 3D modeling, Convolution, Graphics processing units
With the increasing reliance of doctors on imaging procedures, not only visualization needs to be optimized,
but the reconstruction of the volumes from the scanner output is another bottleneck. Accelerating the computationally
intensive reconstruction process improves the medical work flow, matches the reconstruction speed
to the acquisition speed, and allows fast batch processing and interactive or near-interactive parameter tuning.
Recently, much effort has been focused on using the computational power of graphics processing units (GPUs)
for general purpose computations. This paper presents a GPU-accelerated implementation of single photon
emission computed tomography (SPECT) reconstruction based on an ordered-subset expectation maximization
algorithm. The algorithm uses models for the point-spread-function (PSF) to improve spatial resolution in the
reconstruction images. Instead of computing the PSF directly, it is modeled as efficient blurring of slabs on the
GPU in order to accelerate the process. The algorithm for the calculation of accumulated attenuation factors
that allows correcting the generated volume according to the attenuation properties of the volume is optimized
for processing on the GPU. Since these factors can be reused between different iterations, a cache is used that is
adapted to different sizes of the video memory so that only those factors have to be recomputed that do not fit
onto graphics memory. These improvements make the reconstruction of typical SPECT volume near interactive.
Non-rigid multi-modal volume registration is computationally intensive due to its high-dimensional parameter
space, where common CPU computation times are several minutes. Medical imaging applications using registration,
however, demand ever faster implementations for several purposes: matching the data acquisition speed,
providing smooth user interaction and steering for quality control, and performing population registration involving
multiple datasets. Current GPUs offer an opportunity to boost the registration speed through high
computational power at low cost. In our previous work, we have presented a GPU implementation of a non-rigid
multi-modal volume registration that was 6 - 8 times faster than a software implementation. In this paper, we
extend this work by describing how new features of the DX10-compatible GPUs and additional optimization
strategies can be employed to further improve the algorithm performance. We have compared our optimized
version with the previous version on the same GPU, and have observed a speedup factor of 3.6. Compared with
the software implementation, we achieve a speedup factor of up to 44.
Non-rigid multi-modal registration of images/volumes is becoming increasingly necessary in many medical settings.
While efficient registration algorithms have been published, the speed of the solutions is a problem in
clinical applications. Harnessing the computational power of graphics processing unit (GPU) for general purpose
computations has become increasingly popular in order to speed up algorithms further, but the algorithms have
to be adapted to the data-parallel, streaming model of the GPU. This paper describes the implementation of
a non-rigid, multi-modal registration using mutual information and the Kullback-Leibler divergence between
observed and learned joint intensity distributions. The entire registration process is implemented on the GPU,
including a GPU-friendly computation of two-dimensional histograms using vertex texture fetches as well as an
implementation of recursive Gaussian filtering on the GPU. Since the computation is performed on the GPU,
interactive visualization of the registration process can be done without bus transfer between main memory
and video memory. This allows the user to observe the registration process and to evaluate the result more
easily. Two hybrid approaches distributing the computation between the GPU and CPU are discussed. The first
approach uses the CPU for lower resolutions and the GPU for higher resolutions, the second approach uses the
GPU to compute a first approximation to the registration that is used as starting point for registration on the
CPU using double-precision. The results of the CPU implementation are compared to the different approaches
using the GPU regarding speed as well as image quality. The GPU performs up to 5 times faster per iteration
than the CPU implementation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.