Various rare-earth doped solids can be cooled by anti-Stokes fluorescence, but only a few, particularly ytterbium (Yb)-doped LiYF4 (YLF), showed the potential to reach the cryogenic temperature regime (below 123 K). We propose to adopt cubic Yb-doped KY3F10 (Yb:KYF) for reaching sub-100 K cooling temperatures. The temperature-dependent spectroscopy of Yb:KYF and the comparison with Yb:YLF indicate its high potential to achieve lower cooling temperatures. The calculated figure-of-merit of laser cooling of Yb:KYF is higher than that of Yb:YLF by a factor of five at 100 K. This is because Yb:KYF has a significantly shorter mean fluorescence wavelength of 991 nm compared to the value of 1004 nm for Yb:YLF at 100 K. We grew Yb:KYF crystals by the Czochralski method with varied growth parameters, and experimentally compared their laser cooling performance with an Yb:YLF also grown at our institute. We observed efficient laser cooling in the Yb:KYF crystals at room temperature. Laser-induced thermal modulation spectroscopy tests determined their external quantum efficiencies to be higher than 98.5% and background absorption coefficients to be as low as 1.0•10-4 cm-1. The minimal achievable temperature (MAT) of our best Yb:KYF sample was calculated to be ≈90 K, attractive to be used in optical cryocoolers.
Crystalline materials with suppressed impurity concentrations are essential elements for efficient solid-state laser cooling based on anti-Stokes fluorescence. So far, fluoride single crystals doped with rare earth ions have been demonstrated as efficient laser cooling media. We report on our growth activities on high purity rare-earth-doped fluoride single crystals for this specific application. We grew a variety of fluoride crystals doped with ytterbium by the Czochralski method. These crystals are studied by temperature-dependent spectroscopy to fully reveal their potential as laser cooling media. The cooling efficiency of the grown crystals is directly evaluated in a laser-induced cooling setup in vacuo.
We report on UV-pumping of a visible Tb:LiLuF4 laser emitting at 544 and 588 nm. Pumping with a frequency-doubled Ti:sapphire laser at 359 nm significantly improves the absorption efficiency compared to conventional in-band pumping at ~488 nm and cross relaxation from the excited level 5D3 efficiently populates the upper laser level 5D4. In this way, optical efficiencies of 29% and 12%, respectively, are obtained with respect to the incident pump power. A passively Q-switched Tb:LiLuF4 laser at 544 nm using a Co2+-doped MgAl2O4 as a saturable absorber yields 23-µJ pulses at 3.5 kHz with a pulse duration of ~200 ns.
We report the spectroscopy of crystalline waveguide amplifiers operating in the telecom C-band. Thin films of erbiumdoped gadolinium lutetium potassium double tungstate, KGdxLuyEr1-x-y (WO4)2, are grown by liquid- phase epitaxy onto undoped potassium yttrium double tungstate (KYW) substrates and micro-structured by Ar+- beam etching. Channel waveguides with erbium concentrations between 0.45–6.35 × 1020 cm-3 are characterized. The transition cross-sections of interest are estimated. The effect of energy-transfer up-conversion (ETU) is experimentally investigated. Microscopic and macroscopic ETU parameters are extracted from a simultaneous analysis of 20 decay curves of luminescence on the transition 4I13/2 → 4I13/2. The correlation between ETU and the doping concentration is studied. Pump excited-state absorption (ESA) on the transition 4I11/2 → 4F7/2 is investigated via a direct ESA measurement using a double-modulation pump-probe technique. The effect of ESA is studied for different pump wavelengths. The pump wavelength of 984.5 nm is found to be favorable for the complete range of erbium concentrations.
We report on power scaling of a modelocked thin disk laser (TDL) based on the broadband mixed sesquioxide material
Yb:LuScO3 (22 nm full width half maximum (FWHM) emission bandwidth). In a first experiment, we could demonstrate
pulse durations as short as 195 fs at a moderate average power of 9.5 W. Furthermore, we were able to power scale our
TDL while keeping the pulses short reaching 23 W at a pulse duration of 235 fs. A key element to achieve this result was
the design of new SESAM structures with multiple quantum wells (QW) and a suitable dielectric topcoating, resulting in
SESAMs with appropriate parameters for short pulse geneartion, low two-photon absorption (TPA) and high damage
thresholds. We will present SESAM optimization guidelines for short pulse generation from high-power modelocked
oscillators.
Ultrafast thin disk lasers achieve higher pulse energies and average power levels than any other modelocked oscillators.
The key components of SESAM modelocked thin disk lasers are used in reflection, which is an advantage for the
generation of ultrashort pulses with excellent temporal, spectral and spatial properties. We review the development and
report latest results. We report on successful scaling of a Yb:Lu2O3 thin disk laser to 141 W average power, setting a new record for mode-locked laser oscillators. Such performance is important for a growing number of applications such as
material processing or driving experiments in high field science.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.