This work presents a power-efficient wireless sensor implemented using microelectromechanical system (MEMS)-based dry electrodes (MDE) and a ZigBee protocol chip for physiological signal acquisition. To improve signal quality with low electrode-skin interface impedance, a silicon-based MDE is fabricated via micromachining technology. The proposed wireless sensor can provide four different channels for up to 10 kHz bandwidth, 10-bit resolution biomedical signal transmissions. Different from other systems, the proposed wireless sensor employs a novel power management method for physiological signals to reduce power consumption. The proposed wireless sensor successfully transmits electrocardiogram (ECG) signals and four-channel electroencephalogram (EEG) signals with power consumptions of 92.7 and 56.8 mW respectively. It consumes 46% less power than the original sensor without power management (173 mW) in ECG acquisition and 67% less power in EEG acquisition. The circuit printed-circuit-band area in the proposed wireless sensor is 3.5×4.5 cm, suitable for various portable biomedical applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.