Wide Field Optical Spectrograph (WFOS) is the first light instrument of Thirty Meter Telescope (TMT), which will be one of the wide field spectrographs for optical spectroscopy and can probe the faintest limits. In order to reach the faintest limits provided by the aperture of TMT, WFOS is designed to have multi-object slit-based spectrograph. WFOS can observe about ~60 objects in a given exposure and cover the full wavelength range in low resolution (R~1500) observing mode. Slitless spectroscopy has been popular in space based instruments, however it is not pursued in ground based observatories due to the background contamination. Considering large plate scale of TMT and oversampling of seeing disk we will be able to extract the individual spectra from WFOS slitless observing mode. Here we present the feasibility of slitless mode of TMT-WFOS and the sensitivity limit for various field densities focusing on MilkyWay satellite galaxies. We study the background contamination due to the bright targets and the density distribution of the satellite galaxy fields.
We present details of the recent trade study on design changes to the Wide Field Optical Spectrometer (WFOS) for the Thirty Meter Telescope (TMT)[1]. WFOS is planned as a first light instrument and will provide highly efficient imaging and multi-slit spectroscopy over the wavelength range 0.31 to 1µm across a field of view of 8.3 by 3 arcminutes. The existing baseline prior to the trade study used a laser cut metal slit mask at the focal plane to enable observation of ~50 to 80 objects simultaneously. The masks would be cut in advance of observing and installed in a cassette, allowing a mechanism to select the mask and move it into place at the focal plane. Each multi-object observation requires a dedicated mask, with a more general single long slit mask remaining in the cassette permanently. The configurable slit unit (CSU) is an alternative approach, and a design that has previously been used in MOSFIRE and FORS. A CSU uses multiple knife edges mounted on computer-controlled bars to create and position slits at the focal plane. In the case of WFOS the CSU will be capable of creating 96 separate slits with the ability to reconfigure them on the fly to adapt to seeing conditions or to respond to targets of opportunity. We detail here the decision criteria, design, and science case analysis used by the WFOS team to decide to change the baseline design of WFOS to incorporate a CSU.
The Thirty Meter Telescope (TMT) will host three science instruments at first light: IRIS (InfraRed Imaging Spectrograph), WFOS (Wide Field Optical Spectrograph), and MODHIS (Multi-Objective Diffraction-limited Highresolution Infrared Spectrograph). IRIS is a workhorse imager and spectrograph coupled to the Narrow-Field InfraRed Adaptive Optics System (NFIRAOS) to exploit the gains possible when working at the diffraction limit on an extremely large telescope. It has an imager field of view of 34 by 34 square arcseconds, and the integral field spectrograph supports a variety of spaxel scales and fields of view at resolutions between 4000 and 10,000. MODHIS, also working behind NFIRAOS, is focused on exoplanet science will deliver precision radial velocity measurements at a spectral resolution of 100,000 for a single object. WFOS is the workhorse optical multi-object imaging spectrograph. It has an 8 by 3 square arcminute field of view and is capable of targeting almost 100 objects at once with resolutions between 1500 and 5000.
Since the start of science operations in 1993, the twin 10-meter W. M. Keck Observatory (WMKO) telescopes have continued to maximize their scientific impact to produce transformative discoveries that keep the U.S. observing community on the frontiers of astronomical research. Upgraded capabilities and new instrumentation are provided though collaborative partnerships primarily with the Caltech and University of California instrument development teams and through additional collaborations with the University of Notre Dame, the University of Hawaii, Swinburne University of Technology, industry, and other organizations. This paper summarizes the status and performance of observatory infrastructure projects, technology upgrades, and new additions to the suite of observatory instrumentation. We also provide a status of instrumentation projects in early and advanced stages of development that will achieve the goals and objectives summarized in the 2023 Keck Observatory strategic plan. Developed in collaboration with the WMKO science community, the Keck strategic plan sets our sites on 2035 and meets goals identified in the Astro2020 Decadal Survey.
We present the conceptual design of a room-temperature configurable slit unit (CSU) for the Low-Resolution Imaging Spectrograph 2 (LRIS-2), an upgraded version of a widely used instrument at WMKO. The CSU is a significant enhancement, allowing real-time reconfiguration of slit masks without the need for single-use, machined metal masks. It consists of 72 pairs of motorized bars that can align to form slits, providing flexibility for astronomers in creating various slit shapes and sizes. The CSU will be especially beneficial if Keck receives an adaptive optics upgrade as slits can be adjusted in real time to match the improved seeing.
LRIS-2 (Low Resolution Imaging Spectrometer) is a planned Cassegrain mounted spectrometer at WM Keck Observatory with on-axis field of view of 5’x10’ in two simultaneous wavelength channels covering 310-1000nm at R~1500 in a single exposure. This instrument will replace its precursor whose optomechanical design and aging mechanisms preclude further improvements in its stability and reliability. The instrument has two science cameras for Red (~550-1000nm) and blue (~310-550nm) channels, each comprising of six lens elements. This poster details the design scheme and thermo-structural analysis for the lens mounting strategy. The design features 6 passive radial thermal compensators, addressing differential thermal expansion between Aluminum cell and the lens. A comparative assessment among three material candidates for the compensators resulted in an optimized geometry and hertzian contact stress using finite element analysis (FEA). A prototype was developed to validate the design accuracy and repeatability.
We present the preliminary design for the configurable slit unit (CSU) for TMT’s Wide Field Optical Spectrometer (WFOS). The design consists of 96 bar pairs that can create an arbitrary pattern of focal plane slits. The large number of motorized mechanisms to drive the bars into position requires a high reliance on off the shelf components to reduce cost and design effort. A prototype was completed that shows the selected components will likely meet requirements. The current design nearing completion as WFOS ramps into a preliminary design review in 2025.
We present the conceptual design of the integral field unit (IFU) for Wide Field Optical Spectrograph (WFOS), one of the first-generation instruments on TMT. The IFU is a promising upgrade path of WFOS. The IFU has 4 image slicers with different slice widths of 1.5, 0.75, 0.5 and 0.25 arcsec. The slice length and the number of slices are 20 arcsec and 18 in all slicers. These slicers offer the field sizes of 27, 13.5, 9 and 4.5 × 20 arcsec2, respectively. This field variation covers sizes of galaxy, circum-galactic medium and inter-galactic medium. In the 0.25-arcsec width mode, the spectral resolution reaches R=13,635 without slit loss. Multilayer dielectric reflective coating with high reflectivity (> 98% at any wavelength) is made on all reflective surfaces, which offers high through put of the IFU (> 80%).
We present a concept design for a next generation low resolution, wide-field, optical imaging spectrometer intended to continue the legacy of LRIS as the premier workhorse optical spectrometer on the Keck I telescope, which we notionally call LRIS-2. The original LRIS continues to be used an average of more than 100 nights per year while maintaining a remarkably high publication rate, neither of which shows any signs of diminishing with time. Nevertheless, LRIS was commissioned ∼30 years ago, and its opto-mechanical design and aging mechanisms preclude further improvements in its stability and reliability. This paper presents the conceptual design of a state-of-the-art instrument combining the core capabilities and scientific versatility of LRIS with substantial improvements in throughput, image quality, stability, and on-sky efficiency. In this paper, we present a concept for a versatile imaging spectrometer with an on-axis field of view of 10′×5′ in two simultaneous wavelength channels that together cover 3100 – 10,300Å at R∼1500 in a single exposure, with a multiplex factor of 70. The optical design delivers total spectroscopic throughput close to 60%, a gain over the current LRIS of 30-100%. The design is able to benefit from significant engineering heritage from LRIS-B, KCWI, KCRM, and TMT-WFOS projects.
We present the current design of WFOS, a wide-field UV/optical (0.31-1.0 µm) imaging spectrograph planned for first-light on the TMT International Observatory 30 m telescope. WFOS is optimized for high sensitivity across the entire optical waveband for low-to-moderate resolution (R ∼ 1500-5000) long-slit and multi-slit spectroscopy of very faint targets over a contiguous field of view of 8′ .3×3 ′ .0 at the f/15 Nasmyth focus of TMT. A key design goal for WFOS is stability and repeatability in all observing modes, made possible by its gravity-invariant opto-mechanical structure, with a vertical rotation axis and all reconfigurable components moving only in planes defined by tiered optical benches parallel to the Nasmyth platform. WFOS’s optics include a linear ADC correcting a 9′ diameter field, including both the science FoV and 4 patrolling acquisition, guiding, and wavefront sensing camera systems; a novel 2-mirror reflective collimator allowing the science FoV to be centered on the telescope optical axis; a dichroic beamsplitter dividing the collimated beam into 2 wavelength-optimized spectrometer channels (blue: 0.31-0.56 µm; red: 0.54-1.04 µm); selectable transmissive dispersers (VPH and/or VBG) with remotely configurable grating tilt (angle of incidence) and camera articulation that enable optimization of diffraction efficiency and wavelength coverage in each channel; all-refractive, wavelength-optimized f/2 spectrograph cameras, and UV/blue and red-optimized detector systems. The predicted instrumental through put of WFOS for spectroscopy averages > 56% over the full 0.31-1 µm range, from the ADC to the detector. When combined with the 30 m TMT aperture, WFOS will realize a factor of ∼20 gain in sensitivity compared to the current state of the art on 8-10 m-class telescopes.
Since the start of science operations in 1993, the twin 10-meter W. M. Keck Observatory (WMKO) telescopes have continued to maximize their scientific impact and to produce transformative discoveries that keep the observing community on the frontiers of astronomical research. Upgraded capabilities and new instrumentation are provided though collaborative partnerships with Caltech, the University of California, and the University of Hawaii instrument development teams, as well as industry and other organizations. This paper summarizes the performance of recently commissioned infrastructure projects, technology upgrades, and new additions to the suite of observatory instrumentation. We also provide a status of projects currently in design or development phases and, since we keep our eye on the future, summarize projects in exploratory phases that originate from our 2022 strategic plan developed in collaboration with our science community to adapt and respond to evolving science needs.
Many areas of astronomical research rely on deep blue wide-field imaging. Mauna Kea enjoys the very best UV transparency from the ground and the Keck telescopes with 10 meter f/1.75 primaries are well suited to a prime focus camera with a large angular field. Swinburne University leads a proposal to provide a camera (KWFI, for Keck Wide Field Imager) that is optimized in the UV but works well to 1μm wavelength. Keck has interchangeable top end modules, of which one is now unused and easily capable of housing the required corrector lens and detector enclosure. This paper concentrates on details of the KWFI optical design.
Ground-layer adaptive optics (GLAO) systems offer the possibility of improving the ”seeing” of large ground-based telescopes and increasing the efficiency and sensitivity of observations over a wide field-of-view. We explore the utility and feasibility of deploying a GLAO system at the W. M. Keck Observatory in order to feed existing and future multi-object spectrographs and wide-field imagers. We also briefly summarize science cases spanning exoplanets to high-redshift galaxy evolution that would benefit from a Keck GLAO system. Initial simulations indicate that a Keck GLAO system would deliver a 1.5x and 2x improvement in FWHM at optical (500 nm) and infrared (1.5
μm), respectively. The infrared instrument, MOSFIRE, is ideally suited for a Keck GLAO feed in that it has excellent image quality and is on the telescope’s optical axis. However, it lacks an atmospheric dispersion compensator, which would limit the minimum usable slit size for long-exposure science cases. Similarly, while LRIS and DEIMOS may be able to accept a GLAO feed based on their internal image quality, they lack either an atmospheric dispersion compensator (DEIMOS) or flexure compensation (LRIS) to utilize narrower slits matched to the GLAO image quality. However, some science cases needing shorter exposures may still benefit from Keck GLAO and we will investigate the possibility of installing an ADC.
The Multi-Object Spectrograph for Infrared Exploration (MOSFIRE) achieved first light on the W. M. Keck Observatory’s Keck I telescope on 4 April 2012 and quickly became the most popular Keck I instrument. One of the primary reasons for the instrument’s popularity is that it uses a configurable slitmask unit developed by the Centre Suisse d’Electronique et Microtechnique (CSEM SA) to isolate the light from up to 46 objects simultaneously. In collaboration with the instrument development team and CSEM engineers, the Keck observatory staff present how MOSFIRE is successfully used, and we identify what contributed to routine and trouble free nighttime operations.
This paper describes the as-built performance of MOSFIRE, the multi-object spectrometer and imager for the Cassegrain
focus of the 10-m Keck 1 telescope. MOSFIRE provides near-infrared (0.97 to 2.41 μm) multi-object spectroscopy over
a 6.1' x 6.1' field of view with a resolving power of R~3,500 for a 0.7" (0.508 mm) slit (2.9 pixels in the dispersion
direction), or imaging over a field of view of ~6.9' diameter with ~0.18" per pixel sampling. A single diffraction grating
can be set at two fixed angles, and order-sorting filters provide spectra that cover the K, H, J or Y bands by selecting 3rd,
4th, 5th or 6th order respectively. A folding flat following the field lens is equipped with piezo transducers to provide
tip/tilt control for flexure compensation at the <0.1 pixel level. Instead of fabricated focal plane masks requiring frequent
cryo-cycling of the instrument, MOSFIRE is equipped with a cryogenic Configurable Slit Unit (CSU) developed in
collaboration with the Swiss Center for Electronics and Microtechnology (CSEM). Under remote control the CSU can
form masks containing up to 46 slits with ~0.007-0.014" precision. Reconfiguration time is < 6 minutes. Slits are formed
by moving opposable bars from both sides of the focal plane. An individual slit has a length of 7.0" but bar positions can
be aligned to make longer slits in increments of 7.5". When masking bars are retracted from the field of view and the
grating is changed to a mirror, MOSFIRE becomes a wide-field imager. The detector is a 2K x 2K H2-RG HgCdTe
array from Teledyne Imaging Sensors with low dark current and low noise. Results from integration and commissioning
are presented.
MOSFIRE is a new multi-object near-infrared spectrometer for the Keck 1 telescope with a spectral resolving
power of R~3500 for a 0.7″ slit (2.9 pixels). The detector is a substrate-removed 2K × 2K HAWAII 2-RG HgCdTe
array from Teledyne Imaging Sensors with a cut-off wavelength of 2.5 μm and an operational temperature of
77K. Spectroscopy of faint objects sets the requirement for low dark current and low noise. MOSFIRE is also
an infrared camera with a 6.9′ field of view projected onto the detector with 0.18″ pixel sampling. Broad-band
imaging drives the requirement for 32-channel readout and MOSFIREs fast camera optics implies the need for
a very at detector. In this paper we report the final performance of the detector selected for MOSFIRE. The
array is operated using the SIDECAR ASIC chip inside the MOSFIRE dewar and v2.3 of the HxRG software.
Dark current plus instrument background is measured at <0.008 ē s−1 pixel−1 on average. Multiple Correlated
Double Sampling (MCDS) and Up-The-Ramp (UTR) sampling are both available. A read noise of <5ē rms is
achieved with MCDS 16 and the lowest noise of 3ē rms occurs for 64 samples. Charge persistence depends on
exposure level and shows a large gradient across this detector. However, the decay time constant is always ~660
seconds. Linearity and stability are also discussed.
Multi-object spectroscopy via custom slitmasks is a key capability on three instruments at the W. M. Keck Observatory.
Before observers can acquire spectra they must complete a complex procedure to align each slit with its corresponding
science target. We developed the Slitmask Alignment Tool (SAT), to replace a complex, inefficient, and error-prone
slitmask alignment process that often resulted in lost sky time for novice and experienced observers alike.
The SAT accomplishes rapid initial mask alignment, prevents field misidentification, accurately predicts alignment box
image locations, corrects for flexure-induced image displacement, verifies the instrument and exposure configuration,
and accommodates both rectangular and trapezoidal alignment box shapes. The SAT is designed to lead observers
through the alignment process and coordinate image acquisition with instrument and telescope moves to improve
efficiencies. By simplifying the process to just a few mouse clicks, the SAT enables even novice observers to achieve
robust, efficient, and accurate alignment of slitmasks on all three Keck instruments supporting multislit spectroscopy,
saving substantial observing time.
MOSFIRE is a unique multi-object spectrometer and imager for the Cassegrain focus of the 10 m Keck 1 telescope. A
refractive optical design provides near-IR (0.97 to 2.45 μm) multi-object spectroscopy over a 6.14' x 6.14' field of view
with a resolving power of R~3,270 for a 0.7" slit width (2.9 pixels in the dispersion direction), or imaging over a field of
view of 6.8' diameter with 0.18" per pixel sampling. A single diffraction grating can be set at two fixed angles, and
order-sorting filters provide spectra that cover the K, H, J or Y bands by selecting 3rd, 4th, 5th or 6th order respectively. A
folding flat following the field lens is equipped with piezo transducers to provide tip/tilt control for flexure compensation
at the 0.1 pixel level. A special feature of MOSFIRE is that its multiplex advantage of up to 46 slits is achieved using a
cryogenic Configurable Slit Unit or CSU developed in collaboration with the Swiss Centre for Electronics and Micro
Technology (CSEM). The CSU is reconfigurable under remote control in less than 5 minutes without any thermal
cycling of the instrument. Slits are formed by moving opposable bars from both sides of the focal plane. An individual
slit has a length of 7.1" but bar positions can be aligned to make longer slits. When masking bars are removed to their
full extent and the grating is changed to a mirror, MOSFIRE becomes a wide-field imager. Using a single, ASIC-driven,
2K x 2K H2-RG HgCdTe array from Teledyne Imaging Sensors with exceptionally low dark current and low noise,
MOSFIRE will be extremely sensitive and ideal for a wide range of science applications. This paper describes the design
and testing of the instrument prior to delivery later in 2010.
MOSFIRE, the multi-object spectrometer for infra-red exploration, is a near-IR (0.97-2.45 micron) spectrograph and
imager for the Cassegrain focus of the Keck I telescope. The optical design provides imaging and multi-object
spectroscopy over a field of view (FOV) of 6.14' x 6.14' with a resolving power of R~3,270 for a slit width of 0.7 arc
seconds (2.9 pixels along dispersion). The detector is a 2.5 micron cut-off 2K x 2K H2-RG HgCdTe array with a
SIDECAR ASIC for detector control. A special feature of MOSFIRE is that its multiplex advantage of up to 46 slits is
achieved using a cryogenic Configurable Slit Unit (developed in collaboration with the Swiss Centre for Electronics and
Micro Technology) reconfigurable under remote control in <5 minutes without thermal cycling. Slits are formed by
moving opposable bars from both sides of the focal plane. An individual slit has a length of ~7.1 arc seconds but bar
positions can be aligned to make longer slits. A single diffraction grating in two positions along with order-sorting filters
gives essentially full coverage of the K, H, J and Y bands using 3rd, 4th, 5th or 6th order respectively. The grating and a
mirror are mounted back-to-back, and when the bars are retracted from the FOV MOSFIRE becomes a wide-field
imager. A piezo tip-tilt mirror following the field lens is used to provide flexure compensation at the 0.1 pixel level. Two
large CCR heads allow the instrument to reach operating temperature in ~7 days. MOSFIRE is currently in construction.
Marc Davis, Sandra Faber, Jeffrey Newman, Andrew Phillips, Richard Ellis, Charles Steidel, C. Conselice, Alison Coil, D. Finkbeiner, David Koo, Puragra Guhathakurta, B. Weiner, Ricardo Schiavon, C. Willmer, Nicholas Kaiser, Gerard Luppino, Gregory Wirth, Andrew Connolly, Peter Eisenhardt, M. Cooper, B. Gerke
The DEIMOS spectrograph has now been installed on the Keck-II telescope and commissioning is nearly complete. The DEEP2 Redshift Survey, which will take approximately 120 nights at the Keck Observatory over a three year period and has been designed to utilize the power of DEIMOS, began in the summer of 2002. The multiplexing power and high efficiency of DEIMOS enables us to target 1000 faint galaxies per clear night. Our goal is to gather high-quality spectra of ≈ 60,000 galaxies with z>0.75 in order to study the properties and large scale clustering of galaxies at z ≈ 1. The survey will be executed at high spectral resolution, R=λ/Δλ ≈ 5000, allowing us to work between the bright OH sky emission lines and to infer linewidths for many of the target galaxies (for several thousand objects, we will obtain rotation curves as well). The linewidth data will facilitate the execution of the classical redshift-volume cosmological test, which can provide a precision measurement of the equation of state of the Universe. This talk reviews the project, summarizes our science goals and presents some early DEIMOS data.
There has been considerable progress made in the discovery, observation, and understanding of high redshift galaxies in the last few years; most of this progress is attributable to greatly improved spectroscopy throughput made possible by state-of-the-art instruments on the new generation of 8-10m telescopes. Here we review a few of the areas in which substantial progress has been made, and discuss the future of high redshift galaxy work in the context of the observational facilities that are either in operation or soon to come.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.