We report on the investigation of an optical M-by-N switch implementated as a photonic integrated circuit (PIC) in silicon on insulator. The switch relies on a star coupler for non-blocking routing of multiple optical signals. The latter are carried into and out of the star coupler in multi-core dielectric waveguides that support multiple modes. Routing is controlled by applying different optical-phase delays to the individual cores comprising the waveguide. We investigate theoretically and experimentally the viability of the architecture for routing optical signals in a PIC. In addition to signal routing, MASTR switch may be used for general matrix multiplication.
In this work a novel approach to collision avoidance radar is presented. Leveraging the chipsets currently in development for the automotive industry, with an operational band of 77 to 81 GHz a new frontend has been developed using a distributed frequency swept antenna. The frequency swept antenna is able to steer the beam based on the transmit frequency. Multiple sub-array elements are distributed across the bumper of a vehicle increasing the aperture size of the system for improved beam resolution, thereby leading to better system sensitivity. To this end, system modeling was implemented to study the tradeoff between system sensitivity or range and power, gain, antenna aperture size and number of sub-array elements. The sub-arrays were designed, optimized, manufactured, and characterized using a conformal, flexible, low loss high frequency Rogers 3003 material. The measured far field patterns of the developed antenna array demonstrated consistent angular steering characteristics of -4° to 8° over the frequency from 75 to 85GHz with minimum reflection. The developed sub-array elements are cascaded and then synchronized using electronically controlled, high resolution, wideband, low loss W-band phase shifters. To drive such a large distributed array, we also focused on the development of high-resolution or analog phase shifters with 360 degrees coverage from 77-81GHz. The phase shifter chip was designed based on three-vector method and manufactured by leveraging SiGe foundry run. RF integration of the fabricated chips along with the control circuit was also conducted to demonstrate fully phase control over the band of interest. The packaged antenna subarrays and phase shifters are integrated together to form a distributed array. Through synchronization, coherent operation of the system can be established, enhancing the angular resolution of the system. The developed antenna array will be integrated with a Frequency Modulated Continuous Wave (FMCW) transceiver for applications of automobile radars.
Sensors operating in the millimeter wave region of the electromagnetic spectrum provide valuable situational awareness in degraded visual environments, helpful in navigation of rotorcraft and fixed wing aircraft. Due to their relatively long wavelength, millimeter waves can pass through many types of visual obscurants, including smoke, fog, dust, blowing sand, etc. with low attenuation. Developed to take advantage of these capabilities, ourmillimeter wave imager employs a unique, enabling receiver architecture based on distributed aperture arrays and optical upconversion. We have reported previously on operation and performance of our passive millimeter wave imager, including field test results in DVE and other representative environments, as well as extensive flight testing on an H-1 rotorcraft. Herein we discuss efforts to improve RF and optical component hardware integration, with the goal to increase manufacturability and reduce c-SWaP of the system. These outcomes will allow us to increase aperture sizes and channel counts, thereby providing increased receiver sensitivity and overall improved image quality. These developments in turn will open up new application areas for the passive millimeter wave technology, as well as better serving existing ones.
This paper will discuss the development of a millimeter-wave (mm-wave) receiver module used in a sparse array passive imaging system. Using liquid crystal polymer (LCP) technology and low power InP low noise amplifiers (LNA), enables the integration of the digital circuitry along with the RF components onto a single substrate significantly improves the size, weight, power, and cost (SWaP-C) of the mm-wave receiver module compared to previous iterations of the module. Also comparing with previous generation modules, the operating frequency has been pushed from 77 GHz to 95 GHz in order to improve the resolution of the captured image from the sparse array imaging system.
Degraded visual environments create dangerous conditions for aircraft pilots due to loss of situational awareness and/or ground reference, which can result in accidents during navigation or landing. Imaging in millimeter wave spectral bands offers the ability to maintain pilot's situational awareness despite DVE with a "see-through" imaging modality. Millimeter waves exhibit low atmospheric attenuation as well as low scattering loss from airborne particulates, e.g. blowing sand, dust, fog, and other visual obscurants. As such, Phase Sensitive Innovations (PSI) has developed a passive, real-time mmW imager to mitigate brownout dangers for rotorcraft. The imager consists of a distributed aperture array with conversion of detected mmW signals to optical frequencies for processing and image formation. Recently we performed operationally representative flight testing of our sensor while imaging various natural and manmade objects. Here we present imagery collected during these tests as it confirms the performance of the sensor technology and illustrates phenomenology encountered in the mmW spectrum.
The transmission characteristics of millimeter waves (mmWs) make them suitable for many applications in defense and security, from airport preflight scanning to penetrating degraded visual environments such as brownout or heavy fog. While the cold sky provides sufficient illumination for these images to be taken passively in outdoor scenarios, this utility comes at a cost; the diffraction limit of the longer wavelengths involved leads to lower resolution imagery compared to the visible or IR regimes, and the low power levels inherent to passive imagery allow the data to be more easily degraded by noise. Recent techniques leveraging optical upconversion have shown significant promise, but are still subject to fundamental limits in resolution and signal-to-noise ratio. To address these issues we have applied techniques developed for visible and IR imagery to decrease noise and increase resolution in mmW imagery. We have developed these techniques into fieldable software, making use of GPU platforms for real-time operation of computationally complex image processing algorithms. We present data from a passive, 77 GHz, distributed aperture, video-rate imaging platform captured during field tests at full video rate. These videos demonstrate the increase in situational awareness that can be gained through applying computational techniques in real-time without needing changes in detection hardware.
In this presentation we will discuss the performance and limitations of our 220 channel video rate passive millimeter wave imaging system based on a distributed aperture with optical upconversion architecture. We will cover our efforts to reduce the cost, size, weight, and power (CSWaP) requirements of our next generation imager. To this end, we have developed custom integrated circuit silicon-germanium (SiGe) low noise amplifiers that have been designed to efficiently couple with our high performance lithium niobate upconversion modules. We have also developed millimeter wave packaging and components in multilayer liquid crystal polymer (LCP) substrates which greatly improve the manufacturability of the upconversion modules. These structures include antennas, substrate integrated waveguides, filters, and substrates for InP and SiGe mmW amplifiers.
KEYWORDS: Imaging systems, Upconversion, Extremely high frequency, Antennas, Sensors, Image processing, Near field optics, Cameras, Optical scanning systems, Control systems
Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.