Hyperspectral image unmixing is an important part of hyperspectral data analysis. The mixed pixel decomposition consists of two steps, endmember (the unique signatures of pure ground components) extraction and abundance (the proportion of each endmember in each pixel) estimation. Recently, a Discrete Particle Swarm Optimization algorithm (DPSO) was proposed for accurately extract endmembers with high optimal performance. However, the DPSO algorithm shows very high computational complexity, which makes the endmember extraction procedure very time consuming for hyperspectral image unmixing. Thus, in this paper, the DPSO endmember extraction algorithm was parallelized, implemented on the CUDA (GPU K20) platform, and evaluated by real hyperspectral remote sensing data. The experimental results show that with increasing the number of particles the parallelized version obtained much higher computing efficiency while maintain the same endmember exaction accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.