A novel scheme for generating ultra-narrow linewidth and ultra-low noise photonic microwave based on simultaneous self-injection locking of dual DFB lasers is proposed and demonstrated. Herein, two narrow linewidth DFB lasers can be independently achieved by Rayleigh backscattering excited in a micro-resonator as feedback for self-injection locking. The 3-dB linewidth of the DFB laser is compressed from 320 kHz to 1.5 kHz, which is narrowed by 2 orders of magnitude. Based on dual narrow linewidth lasers locked to the same micro-resonator, an all-optical high-performance photonic microwave signal is generated by using the optical heterodyne method. The photonic microwave signal with the single sideband phase noise of −102 dBc/Hz and frequency noise of 600 Hz2/Hz is obtained at a frequency offset of 1 MHz for the generated 5.42 GHz microwave. The proposed scheme is also applicable to any other type of lasers such as VCSEL, fiber lasers et al, which provides a new perspective for the generation of ultra-low noise microwave signals.
Microwave photonic (MWP) based radio frequency (RF) channel is usually composed of three parts: microwave pre-processing part, electro-optical interconversion part and microwave post-processing part. The nonlinearity of active components causes serious harmonics at the output of MWP based RF channels. This paper mainly analyzes the harmonic distortions produced in the external-modulated optical transmission link and studies the variation of output harmonic power in the RF channel by changing the modulator bias point. According to the experiment, it is verified that the second harmonic can be effectively suppressed when the modulator is biased at high power point.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.