In order to study the spatial wavelength division diffraction effect, the Chirped Volume Bragg Gratings (CVBG) based on the Photo-thermo-refractive glass on the oblique incident light was analyzed by the fundamental matrix method. When diffracted by grating, the complex beam would be separated into multiple beams in space by wavelength. The diffraction efficiency of the separated optical wave can reach up to 90%. Furthermore, the diffraction efficiency, increases as the refractive index modulation depth increases and decreases as the chirp rate increases. The diffraction spectrum has the characteristics of flat-top band pass. To increase the spatial separation distance, multiple schemes of CVBGs in parallel combination are designed. By combining a self-focusing lens array, the proposed system can realize wavelength division multiplexing with bandwidth less than 0.4nm.
A collimating system is designed by two orthogonal aspheric cylindrical lenses, which is used to collimate the the output beam of the Laser Diode (LD). The theory of light transmission is used to analyze the optical collimating system. The theoretical expressions are derived and the numerical results are obtained. The nonlinear Levenberg-Marquardt (LM) fitting algorithm based on the trust-region rule is applied to the surface shape evaluation. Residual analysis is used to test the rationality of the model hypothesis, and a simple analysis is made on the source of the error and the data optimization process. And the optical simulation of model optimization results is established. Simulation results show that the semidiverging angles of 20° and 9° for the fast and slow axes of semiconductor laser beam are both reduced to 0.05 mrad after passing the collimation system which is much better than that of a normal cylindrical lens collimating system 3 mrad. A uniform circular spot can be formed in the far field by adjusting the distance between the two aspheric lenses.
In this paper, the laser cleaning soil rust layer on the surface of ceramic artifacts by the way of ablation and thermal stress with infrared high-repetition pulse laser is carried out. A cleaning effect can be achieved with laser scanning 10 times at the speed of 480 mm/s and fluence of 795.7747 J/m2 near the ablation threshold. However, the external force is required to make the soil rust layer fallen off. In contrast, a better cleaning effect that the soil rust layer is directly peeled off under the effect of thermal stress without ablation at the contact surface and external force can be observed with the fluence of 1591.5494 J/m2 and laser scanning at 1 time. Furthermore, a two-layer structure model is built to analyze the mechanism of cleaning by thermal stress based on the heat conduction and thermal stress equation. The maximum peeling thermal stress at the contact surface is 2.854×107 N/m2, which is greater than the adhesion stress of 2.050×107 N/m2. This is in agreement with experiments.
An experimental method is used to measure the optical parameters of a GRIN lens. The intrinsic properties of the lens are well characterized by measuring the intercept values of the different GRIN lenses. Firstly, the intercept equation is derived from the transmission matrix of the GRIN lens, and the measurement method is described in detail. Secondly, we design and make the optical path measuring system. Finally, the error analysis of the experimental results is presented, which shows the feasibility of the working principle and the experiment operation. The principle and equipment of this measuring method are relatively effective, which affords great practical significance for the measurement of the GRIN lens.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.