We provide a speckle aware image segmentation algorithm for synthetic aperture radar (SAR) data. It uses search based segmentation using a three-component machine learning model where speckle noise is considered as discrete component of the feature description. This method allows for the removal of the need for a de-speckling filter during the feature extraction process for SAR images, resulting in a more efficient and accurate approach. A three-component model is used to efficiently represent a feature in SAR data. The algorithm is used to segment different crops from Sentinel-1 C-band SAR data. We describe the search-based segmentation algorithm, three-component model, and its design using K-NN algorithm. We tested the proposed algorithm against K-NN based segmentation on Sentinel-1 images de-speckled using widely used Lee, Refine Lee, Frost, and Gamma-MAP filters. The proposed method is found to produce better classification accuracy compared to results from K-NN and commonly used de-speckling filters.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.