The X-ray spectroscopy telescope Athena has been designed to implement the science theme "the hot and energetic universe", selected by the European Space Agency as the second large mission of its Cosmic Vision program. X-IFU, one of the two interchangeable focal plane instruments of Athena, is a high resolution X-ray spectrometer made of a large array of Transition Edge Sensors. Two options are under consideration for the X-IFU microcalorimeters: Ti/Au bilayers or Mo/Au bilayers. Here we report on our efforts to develop Mo/Au-based TES. The TES are made of high quality superconducting Mo/Au bilayers fabricated at room temperature on low stress Si3N4 membranes; Mo is deposited by RF magnetron sputtering and in-situ covered by a thin (15nm) Au layer deposited by DC sputtering; in a second step, the Au layer thickness is increased ex-situ by e-beam deposition, to obtain suitable resistance Rn and operation temperature values. Very sharp transitions (~few mK transition width) are obtained, with typically Rn~25mΩ and Tc~ 100-120mK for 65/215 bilayers. First simple TES designs are being tested. Also, Bi films several μm thick, intended to constitute the X-ray absorber, are fabricated by electrochemical deposition.
High-Z low-temperature calorimeters are developed by an Italian collaboration (Milano-Como-Gran Sasso Underground Laboratories) in order to search for rare nuclear events and Dark Matter massive candidates. They exhibit an excellent energy resolution, close to that of Ge-diodes, but a much higher efficiency. Different high-Z materials were initially employed . A many-years optimisation work on tellurium oxide (TeO2) lead to impressive results: devices with total masses around 750 g present FWHM energy resolutions on gamma-ray peaks ranging from 1 KeV (close to the 5 KeV energy threshold) to 2.6 KeV at 2615 KeV (208Tl gamma line). A 3.2 KeV FWHM energy resolution was obtained at 5.4 MeV (210Po alpha line), which is by far the best one ever achieved with any alpha detector. These devices, operated at about 10 mK, consist of a TeO2 single crystal thermally coupled to a 50 mg Neutron Transmutation Doped (NTD) Ge crystal working as a temperature sensor. Special care was devoted to methods for response linearization and temporal stabilisation. Devices based on the same principle and specifically optimised could find applications in several fields like gamma-ray astrophysics, nuclear physics searches, environmental monitoring and radiation metrology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.