We propose a scheme for acquiring dual-channel physical random bits based on a vertical-cavity surface-emitting laser (VCSEL) under dual-path polarization-preserved chaotic optical injection (DP-PPOI). The injection chaotic light is generated by a master VCSEL (M-VCSEL), which is subjected to polarization-preserved optical feedback from a fiber Bragg grating (FBG). Under suitable operation parameters, the outputs of X polarization component (X-PC) and Y polarization component (Y-PC) in the M-VCSEL are chaotic signals with weak time-delay signatures (TDS), which are injected into another VCSEL (named as the slave VCSEL, S-VCSEL) via DP-PPOI. Through selecting the injection parameters, the X-PC and Y-PC in the S-VCSEL can simultaneously output chaotic signals with wide bandwidth and suppressed TDS, which are used as entropy sources for generating dual-channel random bits. The results demonstrate that the rates of generated dual-channel random bits can be up to 500 Gbits/s.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.