Though effective and computationally efficient algorithms have been developed, the commonly utilized filtered backprojection (FBP) approach to computed tomography (CT) reconstruction suffers from artifact production in sparse-view applications. Within the past few years, convolutional neural networks (CNNs) have been applied to enhance sparse-view reconstruction in CT imaging. Using a network trained on sparse-view FBP reconstructions, the artifacts introduced by undersampling the imaging space can be removed. In this paper, we investigate specific choices in the implementation of the CNN, including the network architecture, training parameters, and data preprocessing, to determine effects on the images produced by the network. Our proposed algorithm and implementation strategies improve upon the use of FBP algorithms alone by removing artifacts produced during sparse-view CT reconstruction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.