In this report, the performance of Quantum Dot Infrared Photodetector (QDIP) is examined in which the active layer consists of 10 layers of uncoupled InAs quantum dots (QDs) with quaternary In0.21Al0.21Ga0.58As capping. The optical, structural, and electrical properties of the QDIP is observed and compared with a sample in which the QDs are capped with binary GaAs layer. The observation of full width half maximum (FWHM) in the low-temperature photoluminescence (PL) of both sample shows a change in dot size distribution. Variation in the dot size distribution is also observed from the low temperature power dependent PL. Activation energy calculated from the temperature dependent PL indicates better carrier confinement in the structure with In0.21Al0.21Ga0.58As capped QDs. This can be explained by the formation of higher barrier potential. Stain introduced due to lattice mismatch in the heterostructure is calculated from the high resolution X-ray diffraction (HRXRD) Rocking curves, which shows a relatively low value of strain in the QDIP heterostructure with In0.21Al0.21Ga0.58As capping with respect to the QDIP with GaAs capping layer. A five order reduction in the dark current density is also observed form the QDIP with In0.21Al0.21Ga0.58As capping due to insertion of Al in the capping layer. The dark current obtained for the In0.21Al0.21Ga0.58As capped QDIP is 1.9E-5 A/cm2, whereas the same for the GaAs capped QDIP is 4.91 A/cm2. This attributes to the confinement enhancement in the prior QDIP heterostructure.
We present a unique growth technique for molecular beam epitaxial growth of multi-layer InGaAs/GaAs quantum dots on Ge substrate. The optical and structural properties are compared with similar heterostructure grown on GaAs with the aim of achieving similar optical efficiency and structural homogeneity. An interesting phenomenon of increase in integrated photoluminescence (PL) intensity at high temperatures due to thermally assisted inter-dot carrier transfer is investigated using a coupled model and activation energy and quantum efficiency of dots is calculated for grown samples. The optical properties measured using steady state photoluminescence (PL) is found to quite similar to reference sample on GaAs substrate. Structural comparison performed using TEM shows good agreement between samples on Ge and GaAs substrate. H- ion-implantation is done on as-grown samples which further enhances optical properties.
GaAs/AlGaAs multiple quantum wells (MQWs) on Ge substrate are grown by molecular beam epitaxy and their properties are compared with MQWs on GaAs substrate. The scheme of the growth includes GaAs deposition by migration enhanced epitaxy (MEE) at low-temperature and followed by growth of thin GaAs layer at high temperature and annealed during growth. This mechanism reduced the anti-phase domain disorder and blocked the dislocations. An interesting phenomenon of increase in integrated PL intensity of wells with higher activation energy at higher temperatures is observed and is correlated with simultaneous quenching of PL intensity in wells with lower activation energies. TEM images confirm lack of dislocations in QW layers. X-ray diffraction measurements confirm very good structural. In conclusion, multiple quantum wells grown on Ge substrate have properties comparable to those grown on GaAs substrate.
The thermal stability of InAs/GaAs bilayer quantum dots structure has been investigated by photoluminescence (PL) measurements. The fabricated structure on thermal annealing PL shows no shift in peaks upto 650°C indicating a robustness till a certain temperature making it a suitable candidate for vertical cavity surface emitting lasers (VCSELs) and feedback lasers where ideally a fixed wavelength is required. Integrated Photoluminescence gave a high activation energy in the range of 200 meV for the ground state PL peak for all the coupled structures. Above 650°C there is a blue-shift in the PL peak. And at a very high temperature the dots start to diffuse into InAs wetting layer hence decreasing the quality of the crystal. The stability in the PL for temperatures below 650°C can be accounted by strain energy as it works against the interdiffusion of QD and the seed layer till a certain temperature hence it compensates for the temperature effect but after 650°C diffusion term becomes too strong and we observe a blue-shift in the peak. This can be justified theoretically by modifications in the Arrhenius diffusion equation. Due to this interdiffusion of In/Ga atom the dominance of the peak and the intensity of PL peak also changes as the QD composition changes [1-2]. Coupling the dots also leads to high activation energy which in-turn generates a stronger carrier confinement. But as the temperature increases, activation energy decreases weakening the carrier confinement potential because of interdiffusion between dot and seed layer.
In this paper, we discuss detailed strain effects on a bilayer InAs quantum dot with varying GaAs barrier thickness. The exploration of the range of GaAs barrier thickness effect on the InAs/GaAs quantum dots and detailed structure were characterized by transmission electron microscopy, atomic force microscopy, high-resolution X-Ray diffraction (HRXRD) and Raman spectroscopy to evaluate the impact of strained layer and also studied the optical properties by photoluminescence (PL) measurements. On varying the thickness of the GaAs barrier layer, the role of strain demonstrates a promising approach to tuning the quantum dot morphologies and structures and hence, optical properties. This can be easily observed from the HRXRD rocking curves which result in a shift of the zero order peak position. Both in-out-plane strain decrease as the thickness is increased. Even the Raman scattering peaks justify the decrease of strain on increasing the GaAs barrier thickness. Therefore, higher strain propagation indicates redshift in the emission wavelength and the dots are much more uniformly spread out. Structure with a range of 5.5nm-8.5nm GaAs barrier thickness interlayer reveals even high-quality crystallinity of the epilayers with the FWHM of 21.6 arcsecs for the (004) reflection. Uncoupled structure responses low crystalline quality with FWHM of 109 arcsecs. Dislocation density increases drastically with a decrease of strain which is an important aspect of lasers and other devices in increasing their efficiency. Activation energy also shows a positive correlation with coupling structure. Therefore, controlling diffusion length may be key to reducing defects in several strained structures.
This paper presents a detailed morphological analysis of vertically strain-coupled InAs quantum dots with a fixed quaternary capping (In0.21Al0.21Ga0.58As) of 3 nm and a GaAs barrier ranging in thicknesses from 9 to 18 nm. The coupled heterostructures were studied using cross-sectional transmission electron microscopy and compared with uncoupled heterostructures with 2-nm quaternary capping and 50-nm GaAs capping thickness. Power-dependent photoluminescence spectra showed that a minimum capping of 9 nm produced a multimodal dot-size distribution. Increasing the capping from 9 to 18 nm reduced the vertical correlation, thus increasing the dot uniformity. Increasing the capping thickness reduced the coupling and increased the dot size. At a maximum capping (18nm) coupled quantum dots exhibit a bimodal dot-size distribution compared to the mono-modal distribution of the uncoupled quantum dots. The coupled samples demonstrated superior optical properties to uncoupled samples.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.