We present a new generation of liquid crystal shutters for active glasses, well suited to 3-D cinema current trends,
involving triple flash regimes. Our technology uses a composite smectic C* liquid crystal mixture1. In this paper we
focus on the electro-optical characterization of composite smectic-based shutters, and compare their performance with
nematic ones, demonstrating their advantages for the new generation of 3-D cinema and more generally 3-D HDTV.
We present a new approach to achieve tunability on a 1.55 μm vertical cavity surface emitting laser (VCSEL). Tunability is achieved thanks to an electro-optic index modulator. This electro-optic material consists in a n-PDLC phase layer introduced inside the VCSEL cavity. N-PDLC comprises nematic liquid crystal dispersed in a polymer material. This first VCSEL exhibits a 10 nm tuning range and an excellent side-mode suppression ratio higher than 20
dB over the whole spectral range. The device is formed by a conventional InP-based active region with an epitaxial and a dielectric Bragg mirror. The n-PDLC layer length, close to 6 μm, is in agreement with a tunable laser emission without mode-hopping. Another decisive advantage, compared to mechanical solutions, is the tuning response time which is close to a few 10 μs to scan the full spectral range, making this device appropriate for some access network functions. Voltage values are the main limiting factor, 170 Volts have been required to obtain 10 nm tunability, but material
engineering is in progress to improve this point. We presented a first version of the device optically pumped, the next version will be electrically pumped as required for access network applications targeted here.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.