High-Speed silicon modulators, based on carrier dependent absorption effects, have recently been reported in the literature. For improved performance, these modulators rely on a MOS configuration to control carrier accumulation, rather than on carrier injection from the contacts, to induce an index perturbation for controlling the phase of a propagating signal. Accurate simulation of the carrier distribution is required for the analysis of such a device. This entails the self-consistent solution of the coupled electro-thermal transport equations. An appropriate absorption model is also required in order to couple the carrier distribution to the propagating optical field, via a complex index perturbation. Finally, in order to determine performance, the full optical problem must be solved throughout the device domain.
The present work integrates the Box Integral Method of solving the active device transport equations with the Vector Beam Propagation Method (BPM) typically used to analyze passive waveguide structures. A modified Drude Model and Kramers-Kronig relations are used to determine the carrier density dependent absorption and refractive index perturbations. This complex index perturbation is determined as a function of the applied voltage, and used by a simulator based on the BPM to determine the optical performance of an example silicon modulator. Both steady-state and frequency responses are considered. This comprises a general methodology for analyzing realistic semiconductor photonic devices in which the optical propagation is affected by the electro-thermal transport within the device.
We demonstrate the integration of microscopic gain calculation into the laser design tool LaserMOD, which is derived from the Minilase II simulator. A microscopic many body theory of the semiconductor allows for the accurate modeling of the spectral characteristics of the material gain. With such a model, the energetic position of the gain peak, the collision broadening, and therefore, the absolute magnitude of the gain can be predicted based solely on material parameters [2]. In contrast, many simpler approaches rely on careful calibration of model parameters requiring additional effort due to fabrication of samples and experimental studies. In our full scale laser simulation multi dimensional carrier transport, interaction with the optical field via stimulated and spontaneous emission, as well as the optical field itself is computed self consistently. We demonstrate our approach on an example of a Fabry-Perot laser structure with GaInAsP multiple quantum wells for 1.55 μm emission wavelength.
Time-integrated and spectrally resolved degenerate-four-wave mixing experiments at liquid helium temperature on the heavy- hole exciton resonance of a wedged (In,Ga)As/GaAs quantum well Bragg structure reveal a strong dependence of the dynamic and amplitude of the coherent nonlinear optical response in dependence on sample position. In the vicinity of the Bragg resonance the signal amplitude depends on both the rapid dephasing due to enhanced superradiant decay of the excitons and on the constructive interference of the signal amplitude in the backward Bragg reflection direction. We find that even in the presence of moderate inhomogeneous broadening of the excitonic resonance the superradiant decay dominates the excitonic nonlinearity at Bragg resonance. Our experimental results can be fairly well described by solutions based on the semiconductor Maxwell-Bloch equations taking disorder into account.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.