We have observed slow light propagation with a group velocity as slow as 27.52±0.05m/s in a ruby crystal at room temperature. The Gaussian-like pulse signal, which was gained by modulating beam at 514.5nm, was injected into a ruby crystal. The spectral hole effect, attributed to high laser power density, leads to the induced refractive index steep rising. According as this rising, the group velocity of pulse propagation in the ruby becomes very slowly. The experiment result shows that the velocity of pulse propagation depends on the modulation frequency, laser power, the position of crystal and the profile of signal waveform. At the same condition the Gaussian-like pulse obtains much slower velocity than sinusoidal signal.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.