We focus on the development and fabrication of SU8TM-based microchannel networks, which can be integrated into microdevices for fast drug delivery and cell transport on chips. Instead of using sacrificial materials or wafer bonding, a new simplified fabrication method is developed. Single- and double-layered SU8TM channels on silicon substrates are successfully achieved by using this new method, as well as integration of these SU8 channels with microelectrode arrays. A series of cell transport experiments is also successfully performed on these devices. This new fabrication approach and the resulting cell transport experiments are discussed in detail.
Although conventional optical lever technology typically used for scanning probe microscope applications has proven high sensitivity, accuracy, and is cost effective for most applications involving micromachined cantilever deflection measurements, the frequency limitations and space needs limit its applicability to emerging ultrasonic-based scanning probe microscopy (SPM) applications. Recently, the fabrication of cantilevers integrated with actuation and sensing components has opened avenues for feedback-based driving of micromachined cantilevers at higher order resonance frequencies, while sensing average deflection without the need of an optical deflection pathway for average deflection sensing. The work presented here reviews recent efforts by our group in fabricating micromachined cantilevers with integrated ZnO actuation layers to induce cantilever deflection. These cantilevers are being fabricated for use in a heterodyne force microscopy system (HFM) to enable SPM imaging contrast based on viscoelastic response of a surface in contact with a micromachined tip, wherein active-feedback technology is being applied to maintain ultrasonic tip excitation at higher order cantilever resonances. The first- and second-pass fabrication results are presented and reviewed regarding cantilever release and ZnO actuator (and electrode) fabrication. Dynamic response data from these structures, measured via laser Doppler vibrometry, reveal the expected resonance structure for a cantilever of these dimensions.
To assist the growth of the telecommunication sector, new types of optical components such as those based on optical interference filter technology are critical. Existing technologies based on thin-film processing for production of optical communications filters have rapidly advanced. Although the Fabry-Perot bandpass filters made by deposition of alternate layers with high- and low- refractive index have a broad rejection band and a narrow passband, this technique does not allow for the control of filter parameters such as specification and adjustment of the transmitted wavelength at any place across the surface of the filter. The new approach discussed in the paper is directed toward the anodization of silicon to fabricate not only multilayer optical filters with a uniform passband across the field of view but also specially designed passbands at any single point in the field of view of the optical system. In particular, the realization and characterization of spatially distributed filters made of porous silicon are presented. These filters are able to select various passbands in the visible and IR regions. The filters were fabricated on p+ and p - type doped substrates. By varying the electrode configuration on the backside of wafer and the applied potential during electrochemical etching, the desired spatially distributed filter can be formed. The impact of wafer resistivity on filter parameters is discussed.
The pressure for reduction in cost and development time in new product, together with the need to pack more functions into smaller volumes in silicon chips has been fueling the system-on-chip (SOC) development. However, the current SOC technologies available essentially involve merging of chips fabricated with standard CMOS technology. These SOC technologies provide an integration solution with compatible fabrication processes that require little changes in process integration. There is no standard cost-effective solution to make 3D MEMS and optoelectronic devices together with CMOS on the same chip without compromising material compatibility, process complexity and system performance. One solution is to fabricate MEMS and CMOS components on separate wafer substrates and then stack them together with well isolated interconnected vias. In order to demonstrate this wafer-level 3D integration technology, a novel wafer-level bonding technology is being developed. This paper reports a detailed study of 3D MEMS (Micro Electro-Mechanical Systems) integration through multi-wafer anodic and polymeric wafer bonding. Different from previously reported wafer bonding studies, this study focuses on the optimization of the bonding process to improve the bonding quality.
The eventual widespread insertion of microoptoelectromechanical systems (MOEMS) into the marketplace rests fundamentally on the ability to produce viable components that maximize optical performance while minimizing power consumption and size. Active control of surface topology allows for one component to perform multiple functions, thus reducing cost and complexity. Based on the patented MEMS compound grating (MCG), extension of the research at the College of Nanoscale Science and Engineering (CNSE) at the University of Albany, New York, to novel designs, materials, and fabrication methods yielded low-power, high-performance prototypes. The main focus of this work is on the development of a polymer version (including a sacrificial layer, in some designs) of the MCG, which allows for ease of fabrication and a reduced electrostatic actuation voltage. Following a system design effort, several generations of the component are fabricated to optimize the process flow. Component metrology, electromechanical characterization, and initial results of optical tests are reported. A second example presented is the design and prototype fabrication of a spring micrograting using a customized SOI process. This highly flexible component builds on the MCG concept and yields an order of magnitude reduction in actuation voltage.
Although the conventional optical lever technology typically used for scanning probe microscope applications has proven highly sensitive, accurate, and cost effective for most applications involving micromachined cantilever deflection measurements, frequency limitations and space needs limit its applicability to emerging ultrasonic-based SPM applications. Recently, the fabrication of cantilevers integrated with actuation and sensing components has opened avenues for feedback-based driving of micromachined cantilevers at higher-order resonance frequencies while sensing average deflection without the need for an optical deflection pathway for average deflection sensing. The work presented here will review recent efforts by our group in fabricating micromachined cantilevers with integrated piezoresistive deflection-sensing components combined with integrated ZnO actuation layers to induce cantilever deflection. These cantilevers are being fabricated for use in a heterodyne force microscopy system (HFM) to enable SPM imaging contrast based on viscoelastic response of a surface in contact with a micromachined tip wherein active-feedback technology is being applied to maintain ultrasonic tip excitation at higher order cantilever resonances. The first and second-pass fabrication results will be presented and reviewed regarding cantilever release and ZnO actuator (and electrode) fabrication. Dynamic response data from these structures, measured via laser Doppler vibrometery reveal the expected resonance structure for a cantilever of these dimensions.
Solar cells based on organic and inorganic materials are an emerging technology for a new generation of photovoltaics (PV). Hybrid solar cells, which use both organic and inorganic components, have advantages such as cost-effective processing and the ability to fabricate devices on flexible substrates. The combination of organic materials with semiconductor nanostructures allows enhancement of the conversion efficiency due to the fast electron transport in semiconductors and a high interface area between organic and inorganic components. In our work, anodized porous Si (PSi) was chosen as a host matrix filled with Copper Phthalocyanine (CuPC) molecules. The resulting nanocomposite can yield high performance novel materials for solar cells.
The fabrication of PSi was completed using electrochemical etching of Si in diluted hydrofluoric acid (HF). Also, this process, with some modifications, can be applied to produce free-standing PSi films of desired thickness. PSi layer was filled with CuPC dissolved in concentrated sulfuric acid. The top contact was made by sputtering of Au or ITO. A power conversion efficiency (PCE) of 3% (33 mW/cm2) was obtained for 12 um thick n-type pSi layer with pore sizes of approximately 15 nm filled with CuPC. The electrochemical etching of Si under different conditions was carried out to optimize the photovoltaic parameters. A detailed investigation of the solar cell performance depending on porous layer thicknesses and pore sizes is presented. The use of free-standing films of PSi can lead to the fabrication of novel PV solar cells on flexible substrates with high conversion efficiency.
This paper focuses on the development of two MEMS-based devices for lab-on-a-chip bio-applications. The first device is designed to facilitate cell secretion studies by enabling parallel electrochemical detection with millisecond resolution. Initial prototypes of micro-arrays have been fabricated with Cr/Au microelectrodes on various substrates such as polyimide, SU-8 and SiO2. An FT cell-line (bullfrog fibroblast, American Tissue Culture Collection) has been successfully established and cultured directly on these prototype micro-arrays. It is well known that the FT cells can uptake hormones or other macromolecules from the culture media through a non-specific uptake mechanism which is still under investigation. After culturing on micro-arrays, FT cells were loaded with norepinephrine of various concentrations by incubation in the culture media supplied with norepinephrines. Rapid elevation of intracellular Ca2+ levels triggers the exocytosis of norepinephrine which then can be detected by the Cr/Au electrodes. Microfabrication of these prototype micro-arrays as well as cell culture and electrochemical detection results will be presented in this paper. The second device is designed for 3-dimensional transportation of living cells on chips. Initial prototypes of micro-arrays were fabricated with SU-8 buried channels on a silicon substrate. Both single-layered and double-layered SU-8 buried channels have been realized to enable 2D and 3D cell transportation. Stained solutions were used to visualize fluid transport through the channel networks. Following this, living FT cells in solution were successfully transported through single-layered SU-8 channels. Testing of 3D transportation of living FT cells is underway. Microfabrication of these prototype micro-arrays and living cell transportation on chips will also be presented in this paper.
Micromachined cantilevers used as force probes in atomic force microscopy are extremely sensitive to a variety of environment factors such as acoustic noise, temperature and humidity. This unwanted interference can be exploited to produce highly sensitive systems with proper design and under precise conditions. In this paper, we report the development of a new generic process for the fabrication of a microprobe with integrated piezoresistive read-out and built-in piezoelectric actuators. The mechanical performance of cantilever probes of various dimensions was studied. The result from the Finite Element Analysis (FEA) was compared to the experimental results. Application of this probe in a nondestructive, general-purpose, near-field nanomechanical imaging system will be discussed.
The eventual, widespread insertion of Micro-Opto-Electro-Mechanical Systems (MOEMS) into the marketplace rests fundamentally on the ability to produce viable components that maximize optical performance while minimizing power consumption and size. In addition, the incorporation of optical reconfigurability into custom MOEMS devices offers an extra degree of freedom not possible with conventional components. Active control of surface topology allows for one component to perform multiple functions thus reducing cost and complexity. This paper will focus on the current status of the MOEMS research program at the University at Albany Institute for Materials’ (UAIM) NanoFab 200 with several examples described to illustrate component and system development. In particular, among the MOEMS research portfolio at UAIM, the development of selected MOEMS-based, active optics will be discussed. This active control of diffraction and reflection forms the basis for the utility of such devices.
Leveraging the extensive research expertise on the patented MEMS Compound Grating (MCG), emphasis will be placed on the extension of the approach to novel designs, materials and fabrication methods to yield low power, high performance prototypes. The main focus of this paper is on the development of a polymer version (including sacrificial layer, in some designs) of the MCG which allows for ease of fabrication and a reduced electrostatic actuation voltage. Following a system design effort, several generations of the component were fabricated to optimize the process flow. Component metrology, electromechanical characterization and initial results of optical tests will be reported. A second example presented is the design and prototype fabrication of a spring micrograting using a customized SOI process. This highly flexible component builds on the MCG concept and yields an order of magnitude reduction in actuation voltage. These examples will be presented against a backdrop of the broad UAIM program to provide an overview of the applications of MOEMS and their integration with complementary technologies at the wafer level.
We are investigating the development of a rapid and highly sensitive detection method for immunoreactive substances combining MEMS (Micro Electro Mechanical Systems) technology and the appropriate immune stimulant or response factors. Cantilevers of micrometer scale can be used for trace detection of mass change. When a layer of an antigenic substance is covalently deposited, the cantilever is capable of capturing antibodies from samples with high affinity and specificity. The antigen/antibody binding causes multiple physical changes in the cantilever device, including a shift of effective mass and a change in surface tension. The change of effective mass consequently induces a shift in the cantilever’s natural resonant frequency. By monitoring these changes with an optical readout mechanism, the presence of immunoreactive targets in the sample can be detected. This detection method can be used for various types of targets with immunoreactivity and therefore is potentially applicable in hazardous substance monitoring and disease diagnosis. In our effort, phoS1, an antigen shed by Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is utilized for rapid and economic TB detection.
KEYWORDS: Semiconducting wafers, Wafer bonding, Interfaces, Silicon, Microelectromechanical systems, Temperature metrology, Reliability, System on a chip, Polymers, Scanning electron microscopy
Wafer bonding has attracted significant attention in applications that require integration of Micro-Electro-Mechanical Systems (MEMS) with Integrated Circuits (IC). The integration of monolithic MEMS and electronic devices is difficult because of issues such as material compatibility, process compliance and thermal budget. It is important to establish a wafer bonding process which provides long-term protection for the MEMS devices yet does not affect their performance. The attentions for such integration are at the die level and wafer level. Recently, the trend is toward wafer-level integration as a cost effective solution to combine sensing, logic, actuation and communications on a single platform. This paper describes the development of low temperature bonding techniques for post-CMOS MEMS integration in system-on-chip (SOC) applications. The bonding methods discussed in this paper involve Benzocyclobutene polymer (BCB) as glue layer to joint two 200 mm wafers together. The bonding temperature is lower than 400°C. Four-point bending and stud-pull methods were used to investigate the mechanical properties of the bonding interfaces. These methods can provide critical information such as adhesion energy and bonding strength of the bonded interfaces. Initial test results at room temperature showed that the BCB bond stayed intact up to an average stress of 50 MPa. It was observed that the BCB bond strength decreased with increasing temperatures and the energy release rate decreased with decreasing BCB thickness.
A new focused ion beam (FIB) miore method is proposed to measure the in-plane deformation of object in a micrometer scale. The FIB moire is generated by the interference bewteen a prepared specimen grating and FIB raster scan lines. The principle of the FIB moire is described. Several specimen gratings with 0.14 and 0.20 micron spacing are used to generate FIB miore patterns. The FIB moire method is successfully used to measure the residual deformation in a MEMS structure after removing the SiO2 sacrificial layer with a 5000 lines/mm grating. The results demonstrate the feasibility of this method.
In a previous paper to the present forum we outlined the Infrared Components Corporation (ICC) microbolometer development program based on technology licensed from the Australian Defence Science and Technology Organisation (DSTO). We presented an overview of the processing technology and discussed the technology transfer package being developed for implementation in a silicon MEMS foundry. In this paper the progress of the program will be reported, including work at DSTO and Electro-optic Sensor Design (EOSD), and technology transfer to the 200mm MEMS foundry at the SUNY Albany Institute of Materials (UAIM). The development of a new readout integrated circuit (ROIC) and associated camera initiatives at ICC will be discussed.
Despite the recent sag in the optical telecom sector, the development and application of Micro-Opto-Electro-Mechanical Systems (MOEMS)-based devices for optical interconnects continues to expand. The utility of such fundamental research is finding increasing relevance in a variety of technical and commercial areas. This paper will report on the present status of the diffractive and reflective components and arrays that are being developed at the University at Albany’s Institute for Materials (UAIM) NanoFab 200. Selected examples include the current generation of the patented MEMS Compound Grating (MCG) and an innovative micro-scanner device, both of which are being examined for inclusion in prototype interconnect systems.
These devices are based on a dual technology development path which includes decreasing feature size and increasing integration level. The MCG prototypes are currently produced with 1-2 micron feature size in 144 element arrays. The surface topology of these components can be controlled using electrostatic attraction to yield both angular deflection and wavelength separation. The optical and mechanical performance of these devices that use either polysilicon or silicon dioxide as a structural material will be reported. Several prototype MCG array architectures have been interfaced with optical sources including VCSEL arrays to test optical interconnect concepts. In addition, recent work on an innovative micro-scanner will be discussed. The micro-scanner is based on a cantilever design with access electrodes to electrostatically control deflection in multiple planes. Details of the components including simulation, fabrication and initial prototype performance tests will be presented.
In this paper, modeling and simulation of a novel micro-centrifuge for biomedical and biochemical applications is described. The micro-centrifuge that we designed can work not only as a shaker but also as a detector of cell growth, which has great potential applications in bioanalysis. The initial design contains four channels for mixing or collecting of samples by centrifugal force. The rotor, the key component of this device, is actuated using electrostatic force. There are four electrodes on the substrate to actuate the micro-centrifuge rotation around the X-axis (lateral in plane) and the Y-axis (vertical in plane) respectively, and eight pairs of comb drives are used to actuate the micro-centrifuge rotation around the Z-axis (perpendicular to the XY plane). The multiple axis actuation design makes it very flexible to control the micro-centrifuge. Because of its small feature size, the cost of the reagent used for the micro-centrifuge will be greatly reduced. An array of micro-centrifuges will be designed to achieve a fast cycling time. A Finite Element Analysis (FEA) has been completed to analyze the static and dynamic performance of the micro-centrifuge, such as the natural frequencies, tilt angle, and driving voltage. A novel fabrication process using SOI technology has been proposed which is now being developed.
We are focusing on the development of a biochip which will enable massively parallel amperometric measurements on single cells for exocytosis studies. Initial prototypes have been fabricated with picoliter-sized wells which roughly conform to the shape of the cells. The electrochemical measurement using the prototype devices can capture a large fraction, approximately 80%, of the catecholamine release with millisecond temporal resolution. With this prototype device, cells must be manually positioned into the micro-wells by a micromanipulator. Therefore, two new designs incorporating three dimensional microfluidic structures have been developed for automatic cell positioning. One design is based on thin silicon diaphragms with picoliter-sized well arrays, while another has 1μm silicon nitride membranes. Both designs have through-membrane holes and are designed in such a way that the cells will be automatically positioned onto electrodes once a suitable pressure differential is applied between the two sides of the thin diaphragms. Details of the microfabrication process for both designs will be presented in this paper as well as results of automatic cell positioning tests.
There has been a growing interest in the research of microfluidic management systems, e.g., for DNA sequencing devices, biological cell manipulation systems, chemical analysis systems and microdosage systems. microfluidic management is crucial capability in most biomedical nanodevices and micro fuel cells using methanol as fuel. It involves the manipulation of fluids ranging from a scale of nano to millimeters. Basic building components for a microfluidic management system are microvalves and micropump s together with the interconnect fluidic channels . Micropumps can have passive and/or active valve. Because of the increasing functionality in portable electronic devices and systems, the micropumps and mic rovalves should be compact, reliable, long-lifetime and high energy efficient. In this report, the design, fabrication and modeling of a low power, low voltage, leak proof microfluidic management systems will be discussed.
Optical ADD/DROP multiplexers (OADM) are incorporated into all-optical network structures that provide fixed access to a subset of the wavelengths in Wavelength Division Multiplexer (WDM) systems. The rapid growth of broadband data communications and the drive toward cost reduction have made optical MEMS (Micro- Electro-Mechanical Systems) an extremely attractive technology for applications in optical communications. This paper will present theoretical analysis, simulation and testing results of an ADD/DROP multiplexer based on the MEMS-based micro-actuators. The micro-actuator is a MEMS-based compound grating (MCG) with a reconfigurable surface that couples the mechanical motion with optical diffraction. The diffraction patterns depend on the wavelength, incident angle and the grating structural parameters. This property is used to design an OADM that can be applied to broad areas in optical communication. A theoretical analysis is presented to establish the relationship between diffraction beams and the structural parameters of the grating, the wavelength of incident light, incident angle. Prototypes of these micro-actuators have been fabricated. The initial testing demonstrated the feasibility of using the MCG as an OADM. New designs of the MCG for application to the 1.55um optical telecommunication standard will be discussed.
We are developing a novel readout for secretion of hormones and neurotransmitter on micro/nanofabricated chips. Traditional biochemical assays of signaling molecules secreted from cells are slow, cumbersome and have at best, a temporal resolution of several seconds. On the other hand, electrochemical measurement of hormone or transmitter secretion can obtain millisecond temporal resolution if the diffusion distance between the release site on the cell and the working electrode is within 1 micron. Carbon fiber microelectrodes can have millisecond time resolution, but can only measure release form a small fraction of the cell surface. We have fabricated arrays of Au electrodes in wells micromachined on the surface of silicon microchips. Each well/microelectrode roughly conforms to the shape of a single cell in order to capture release forma large fraction of the surface area of each cell with minimal diffusional delays. This paper will present details of the microfabrication process flow as well a initial results demonstrating millisecond-resolution measurement of catecholamine secretion form adrenal chromaffin cells. Our goal for this project is to develop enabling technology for massively parallel systems on a chip such as cell-based biosensors to detect neurotoxins and high-throughput assays of drugs that affect neurotransmitter release.
The use of Micro-Electro-Mechanical Systems (MEMS) technology has opened the door for many applications. In particular, by exploiting the reconfigurability of optical surfaces fabricated with this technology, many sensor, communication and spectroscopic systems can benefit. The controlled re-direction of single or multiple optical input sources can lend itself to high throughput sample analysis or massively parallel optical connectivity. In addition, the change in a MEMS-based optical surface can result in a flexible spectral analysis of incoming radiation. We report on the recent advances in our projects which are focused on the design/simulation, materials processing and integration issues involved with the creation and optimized operation of such diffractive micro-arrays. In this presentation, the state of the art in such devices will be presented which will include the process flow associated with production, structural metrology, optical performance, and parallel switching capabilities of the systems. The use of numerous materials including polysilicon, silicon dioxide and selected polymers as structural layers has enabled the production of devices which can be tailored for specific, performance related applications. Examples to be presented include diffractive surfaces with substantial (1 cm x 1 cm) active areas as well as large arrays with sub-micron feature sizes. Functional integration of the prototype devices include optical interconnects, active spectroscopy and bio/chem diagnostic systems.
Two-dimensional (2D) scanners can be used for displays, printers, optical data storage devices, optical scanning microscopes, and free-space optical interconnects. In this paper, we will describe the modeling and simulation of a novel cantilever microscanner. The scanner is actuated using electrostatic force. The cantilever beam connects to the top electrode. The bottom four electrodes on the substrate provide extra feedback for the control of the cantilever beam. A thorough mechanical analysis (both static and dynamic) using Finite Element Analysis has been performed. Key design parameters such as driving voltage, tilt angle and resonant frequencies have been investigated. The model has not been verified by experimental data but a fabrication process flow has been designed. The fabrication of this novel cantilever microscanner is in progress.
Infrared Components Corporation (ICC) recently announced that the company had acquired rights to uncooled microbolometer technology developed at the Defence Science and Technology Organization (DSTO), Australia. Under the license agreement DSTO is developing a technology transfer package for implementation in a silicon MEMS foundry. ICC has contracted Electro-optic Sensor Design (EOSD) for FPA design and analysis and local co-ordination of the technology transfer program. ICC has also entered into an agreement with SUNY Albany Center for Advanced Thin Film Technology (ACATFT) to transition the DSTO technology to production. In this paper we outline the microbolometer processing technology and discuss the aims and objectives of the ICC program.
We present measurements of the nanoscale elastic properties of hinge structures supporting micro-mirror arrays using a new characterization technique called Ultrasonic Force Microscopy (UFM). This technique is based on Atomic Force Microscopy with ultrasonic excitation which provides a means of testing the elastic response at MHz frequencies. The simultaneous recording of topography with elastic imaging allows the elimination of any artifacts. In this report, we demonstrate that UFM can achieve nano-scale elastic resolution to reveal mechanical stress induced changes as well as process induced material fatigue in the micro-mirror devices. The main aim of this study is polysilicon-based hinge structures that support the micro-mirror because they show the highest stress during mirror switching. Our results indicate that no significant structural and mechanical change of the polysilicon-based hinge support structure occurs even after more than 1,000,000,000 switching cycles. This method offers a non-destructive way to perform reliability characterization on MEMS devices. This technique developed will offer new opportunities for the evaluation of structural and mechanical integrity of MEMS devices.
Following over a decade of MOEMS component development, attention in the research, development and commercial arenas has begun a significant shift to system-level integration of these structures. Applications abound in fields including optical communications, integrated sensors and bio/chemo diagnostics. Furthermore, the impending need for wafer- level integration of MOEMS with logic and actuation is driving R&D into developing a compatible process flow for ultimate, low-cost technology deployment. This paper will describe recent advances in MOEMS development and integration projects at the UAlbany Institute for Materials (UAIM). This discussion will focus on operational details of selected MOEMS projects including diffractive/reflective arrays, VCSEL arrays, and integrated sensor systems. These research and development details will be presented against a backdrop of the NanoFab 200 at UAIM, a unique 200 mm wafer prototyping and integration facility. In particular, reconfigurable diffractive and reflective arrays are currently under development in several complementary programs at UAIM. These programs encompass optical interconnect studies, active spectroscopy and metrology development. This paper will present the current status of these programs that are focused on optical performance improvements, process flow integration, packaging and lifetime tests. To complement these activities, selected MOEMS components are being integrated with VCSEL arrays for application to a variety of sensor systems. Development details of the VCSEL arrays and compatibility issues with custom MOEMS systems will be described. Finally, selected details of 200mm wafer-level integration studies will be presented to illustrate challenges and opportunities.
The MEMS-based Micrograting (MCG) is a basic building component in many optical systems. This paper presents the fabrication technique of a custom MCG whose optical surface can be reconfigured electrostatically. The ruling is made of SiO2 and both the top and the bottom electrodes are made of Cr/Au. A robust three-mask process was designed and developed. The reduced ruling width (1 micrometers ) is not a simple miniaturization of previously reported 3 micrometers and 4 micrometers ruled microgratings. Because of mechanical integrity and fringe effects at the ruling edge during device operation, the design and fabrication of the new 1 micrometers ruled MCG require new material and process integration. To achieve self-alignment between the top electrode and the ruling, the top electrode is patterned first then the pattern is transferred to the ruling material by Reactive Ion Etch (RIE). Experiments show that the lift-off process results in a smoother top electrode than ion milling. Residual stress proves to be an important factor that influences the device performance. Because Ni is used as a hard mask for RIE, the resulting stress gradient causes the rulings to bend up. The actuation voltage is increased as a result of this increased air gap. Annealing experiments are performed to reduce the material residual stress and lower the pull-in voltage. Auger Electron Spectroscopy (AES) data shows that the adhesion layer (Cr) diffuses through the Au and gets oxidized when annealing temperature is higher than 450 degree(s)C. It was found that the optimum annealing condition is at 350 degree(s)C for 1 hour. Finally, optical tests these prototypes show that the diffraction patterns switch at about 11 V, much lower than the devices reported previously.
The rapid advancement of electro-optical components and micro-mechanical devices has led to increased functionality in decreasing package sizes. In particular, the development of massively parallel arrays of optical sources such as Vertical Cavity Surface Emitting Lasers (VCSEL) and innovative micro-opto-electro-mechanical systems (MOEMS) has opened the door for new possibilities. Recently, there has been a drive toward integration of the sensing, processing and actuation functions in a single package for fully integrated performance. One area which can benefit from this research is real time, spectroscopic analysis of biological and chemical samples. Numerous situations require a compact, self-contained bio/chemometric system for rapid, low cost spectral analysis or monitoring. To fully realize this potential, further component development and integration issues must be addressed. This paper will present the status of the VCSEL and MOEMS programs at the Institute and initial integration activities. The VCSELs are based on multiple quantum well Ga/As/InGaAs and GaAs/AlGaAs architectures with monolithic, epitaxially grown distributed Bragg reflectors. The VCSEL arrays have 6-15 micron apertures, 100 micron pitch and a mA threshold current. In parallel, the MOEMS program is focused on the development of active, reconfigurable diffractive and reflective arrays whose surface topology can be changed in real time. These MOEMS arrays can be sued to redirect light for flexible interrogation of samples. The combination of these two technologies offers a unique opportunity for fully functional systems on a chip.
MEMS promise to revolutionize nearly every product category by bringing together silicon-based microelectronics fabrication with silicon micromachining technology, thereby, making possible the realizing of complete systems-on-a-chip.
The evolution of computer chip technology has been marked by a steady progression toward higher performance which will soon be limited by the time delay associated with interconnects. This has led to consideration of alternate interconnect methods to complement or replace conventional metal/dielectric architectures for both intra-chip and chip to chip and detectors. The interconnect medium for this approach, however, is still under conceptual design and has spawned many candidates. Various configurations of static micro-optic arrays however, recent consideration has been given to active, reconfigurable optics based on micro-electro-mechanical systems (MEMS) technologies. These Optical MEMS or MOEMS have enabled innovative devices which can control phase, amplitude and direction of input light beams. One area which has recently received much attention is the creation and use of both reflective and diffractive arrays. This paper will present the development and use of active, reconfigurable MOEMS prototypes applied to proof of principle optical interconnect systems. We have been studying several array architectures consisting of gratings, columnar reflectors and micromirrors. For example, the patented MEMS-based compound grating (MCG) is currently being developed to enable a new class of diffractive arrays which can be used as a massively parallel switch. The MCG is a device which is a superposition of two or more diffraction gratings whose surface topology can be controlled. Various prototype arrays of these MCG devices have been designed, modeled, fabricated and tested. Initial result of these studies will be presented. In addition, application of the digital micromirror device to this problem will also be discussed. Using a custom control software and optical setup, preliminary results from the integration of a DMD into an optical interconnect test stand will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.