We obtained 51 W of UV laser light at 343nm for 8 ns temporally square-shape pulse at 400 kHz repetition rate which corresponds to a peak power of 42.5kW and a conversion rate of 38% from a 133W linearly polarized signal at 1030nm. This high UV power is achieved by third harmonic generation of infrared beam which is generated thanks to a newly developed Ytterbium-doped rod-type high-power amplifier effectively singlemode fiber with a hybrid hexagonal and aperiodic cladding design. Two fibers with MFD at 47µm and 67µm were tested. The 47µm MFD fiber allow to reach up to 200W of singlemode signal before the TMI appearance. This fiber can deliver 150 W of 1030 nm signal with a 250 W pump light, for different nanosecond pulse durations and repetition rates with excellent beam quality (M²<1.1).
We developed two Ytterbium-doped rod-type effective singlemode fibers based on new hexagonal FA-LPF design, exhibiting MFD of 47μm and 67μm. Both fibers can deliver 150W of 1030nm signal for 250W of pump power, characterized in a MOPA set-up for different nanosecond pulse durations and repetition rate with excellent beam quality (M2 ⪅ 1.1). Using the 47μm MFD fiber, TMI threshold has been measured for signal power slightly higher than 200W. Using the 67μm MFD fiber, we performed, through a third harmonic generation, the creation of 51W signal power at 343nm for 8ns temporally square pulse at 400 kHz repetition rate.
Silica fibers are successful at delivering high-power high-energy signals in the near-infrared and visible but suffer from high absorption and color formation in the UV spectrum. Hollow-core negative-curvature antiresonant fibers are promising alternatives as UV radiation has a low overlap with the guiding microstructure. However, their power scaling is hindered by the microstructure power handling and only a few tens to a few hundreds of milliwatt were reported delivered from the nano to the femtosecond regimes. We report on a record single-mode delivery of 23.3W (155μJ) with 89.1% transmission from a 343 nm, 10 ns, 150 kHz laser source developed by Bloom Lasers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.