Our study proposes a technique to enhance light extraction efficiency of light emitting diodes (LEDs) by incorporating various micro-/nanolens arrays (MNLAs) on the substrate layer, which in turn increases the external quantum efficiency (EQE) of the LEDs. To simulate the LEDs, we utilized the finite difference time domain method. To achieve a white LED, we inserted a thin layer of NiO at the interface between the n-type ZnO and the p-type GaN. The basic n-ZnO/NiO/p-GaN heterojunction-based LED exhibited an EQE of 10.99% where the effective refractive index of the LED structure was 1.48. The EQE was further increased by engraving various planoconvex or planoconcave MNLA on the top surface of the substrate layer. A maximum EQE of 12.4% was achieved for convex-1 type (lens height of 0.5 μm and radius of 0.4 μm) elliptical lens engraved LED where the effective refractive index was 1.4. In addition, the peak electroluminescence (EL) light intensity of convex-1 lens-based LED was twice than the light intensity observed in basic LED. Because of excellent EL spectrum and significant amount of light throughout the visible spectrum, the proposed convex-1 structure-based LED can be considered as a prospective candidate for white LED.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.