The integration of furan based repeat units into conjugated systems meant for optoelectronic applications has generally been limited by the photostability of the furan unit. This limitation is due to the susceptibility of furan towards reaction with singlet oxygen, which disrupts the conjugation of the system. Here, we present a family of helical, ester-functionalized polyfurans with dramatically enhanced photostability. Within this family, the emission intensity of P3HEF is essentially non-existent while a chiral branched variant, (S)-P3EHEF, is highly fluorescent. This discrepancy is due to the difference in the compactness of the helical structure of the two polymers. Interestingly, the emission wavelength of (S)-P3EHEF can be tuned through several different techniques such as deposition speed and solvation conditions. The mechanism behind the tunability was explored using fluorescence-based techniques.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.