In this multi-messenger astronomy era, all the observational probes are improving their sensitivities and overall performance. The Focusing on Relativistic universe and Cosmic Evolution (FORCE) mission, the product of a JAXA/NASA collaboration, will reach a 10 times higher sensitivity in the hard X-ray band (E > 10 keV) in comparison with any previous hard x-ray missions, and provide simultaneous soft x-ray coverage. FORCE aims to be launched in the early 2030s, providing a perfect hard x-ray complement to the ESA flagship mission Athena. FORCE will be the most powerful x-ray probe for discovering obscured/hidden black holes and studying high energy particle acceleration in our Universe and will address how relativistic processes in the universe are realized and how these affect cosmic evolution. FORCE, which will operate over 1–79 keV, is equipped with two identical pairs of supermirrors and wideband x-ray imagers. The mirror and imager are connected by a high mechanical stiffness extensible optical bench with alignment monitor systems with a focal length of 12 m. A light-weight silicon mirror with multi-layer coating realizes a high angular resolution of < 15′′ in half-power diameter in the broad bandpass. The imager is a hybrid of a brand-new SOI-CMOS silicon-pixel detector and a CdTe detector responsible for the softer and harder energy bands, respectively. FORCE will play an essential role in the multi-messenger astronomy in the 2030s with its broadband x-ray sensitivity.
The X-Ray Imaging and Spectroscopy Mission (XRISM) is the successor to the 2016 Hitomi mission that ended prematurely. Like Hitomi, the primary science goals are to examine astrophysical problems with precise highresolution X-ray spectroscopy. XRISM promises to discover new horizons in X-ray astronomy. XRISM carries a 6 x 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly and a co-aligned X-ray CCD camera that covers the same energy band over a large field of view. XRISM utilizes Hitomi heritage, but all designs were reviewed. The attitude and orbit control system were improved in hardware and software. The number of star sensors were increased from two to three to improve coverage and robustness in onboard attitude determination and to obtain a wider field of view sun sensor. The fault detection, isolation, and reconfiguration (FDIR) system was carefully examined and reconfigured. Together with a planned increase of ground support stations, the survivability of the spacecraft is significantly improved.
We present the concept of a future Japan-lead X-ray mission, FORCE (Focusing On Relativistic universe and Cosmic Evolution). FORCE is characterized by broadband (1-80 keV) X-ray imaging spectroscopy with high angular resolution (<15"). The sensitivity above 10 keV will be 10 times higher than that of any previous hard X-ray missions. FORCE will trace the cosmic evolution by searching for ``missing black holes'' in the entire range of their mass spectrum and investigate the nature of relativistic particles at various astrophysical shocks by observing their non-thermal X-ray emission.
FORCE (Focusing On Relativistic universe and Cosmic Evolution) is a future Japan-lead X-ray mission in study to achieve wide-band (1-80 keV) coverage with good (15’’ half-power-diameter, HPD) angular resolution, to uncover high energy phenomena currently difficult to access because of strong absorption and/or overlaid thermal emission. The science instrument onboard FORCE is a pair of high-resolution super-mirrors, and wide-band imaging spectrometers, placed with a focal length distance of 12 m. WHXI is designed to achieve high sensitivity, and therefore low background level of 1-3 x 10-3 counts s-1 cm-2. Low and stable background is important especially for diffuse source analysis, and it also contributes to achieve good sensitivity against dim point sources. With this aim, the basic concept of FORCE/WHXI is based on Hitomi/HXI heritage, which has achieved the lowest ever background in 5 to ~30 keV band in orbit. The imager is made of a hybrid X-ray imager and active shield surrounding it. The former consists of a newly developed Si imager (XRPIX) to cover 1-25 keV, and a CdTe imager (CdTe-DSD, a heritage of Hitomi/HXI), to cover 20-80 keV, stacked in tandem. The active shield is made of 3-4 cm thick BGO scintillator crystal covering almost 4-pi radian around the imagers. Lessons learned from both NuSTAR FPMA and Hitomi/HXI will be incorporated in WHXI.
The world's premier X-ray astronomical observatories, Chandra and XMM-Newton, have been operating for about 20 years. The next flagship X-ray observatory launched will be ESA's Athena mission. We discuss planned US contributions to the Athena Wide Field Imager instrument, which encompass transient source detection, background characterization and reduction, and detector electronics design and testing, in addition to scientific contributions.
The High-Energy X-ray Probe (HEX-P) is a probe-class mission concept that will extend the reach of broadband (2-200 keV) X-ray observations, with 40 times the sensitivity of any previous mission in the 10-80 keV band and 10,000 times the sensitivity of any previous mission in the 80-200 keV band. HEX-P addresses key NASA science goals and is an important complement to ESA's L-class Athena mission. Working in coordination with Athena HEX-P will provide continuum measurements that are essential for interpreting Athena spectra. With angular resolution improved by more than an order of magnitude relative to NuSTAR, HEX-P will carry out an independent program aimed at addressing questions unique to the high energy X-ray band, such as the nature of the source that powers Active Galactic Nuclei, the evolution of black holes in obscured environments, and understanding of how compact binary systems form, evolve and influence galactic systems. With heritage from NuSTAR, HEX-P can be executed within the next decade with a budget less than double that of a Medium class Explorer (MIDEX) mission.
The High-Energy X-ray Probe (HEX-P) is a probe-class next-generation high-energy X-ray mission concept that will vastly extend the reach of broadband X-ray observations. Studying the 2-200 keV energy range, HEXP has 40 times the sensitivity of any previous mission in the 10-80 keV band, and will be the first focusing instrument in the 80-200 keV band. A successor to the Nuclear Spectroscopic Telescope Array (NuSTAR), a NASA Small Explorer launched in 2012, HEX-P addresses key NASA science objectives, and will serve as an important complement to ESA’s L-class Athena mission. HEX-P will utilize multilayer coated X-ray optics, and in this paper we present the details of the optical design, and discuss the multilayer prescriptions necessary for the reflection of hard X-ray photons. We consider multiple module designs with the aim of investigating the tradeoff between high- and low-energy effective area, and review the technology development necessary to reach that goal within the next decade.
The ASTRO-H mission was designed and developed through an international collaboration of JAXA, NASA, ESA, and the CSA. It was successfully launched on February 17, 2016, and then named Hitomi. During the in-orbit verification phase, the on-board observational instruments functioned as expected. The intricate coolant and refrigeration systems for soft X-ray spectrometer (SXS, a quantum micro-calorimeter) and soft X-ray imager (SXI, an X-ray CCD) also functioned as expected. However, on March 26, 2016, operations were prematurely terminated by a series of abnormal events and mishaps triggered by the attitude control system. These errors led to a fatal event: the loss of the solar panels on the Hitomi mission. The X-ray Astronomy Recovery Mission (or, XARM) is proposed to regain the key scientific advances anticipated by the international collaboration behind Hitomi. XARM will recover this science in the shortest time possible by focusing on one of the main science goals of Hitomi,“Resolving astrophysical problems by precise high-resolution X-ray spectroscopy”.1 This decision was reached after evaluating the performance of the instruments aboard Hitomi and the mission’s initial scientific results, and considering the landscape of planned international X-ray astrophysics missions in 2020’s and 2030’s. Hitomi opened the door to high-resolution spectroscopy in the X-ray universe. It revealed a number of discrepancies between new observational results and prior theoretical predictions. Yet, the resolution pioneered by Hitomi is also the key to answering these and other fundamental questions. The high spectral resolution realized by XARM will not offer mere refinements; rather, it will enable qualitative leaps in astrophysics and plasma physics. XARM has therefore been given a broad scientific charge: “Revealing material circulation and energy transfer in cosmic plasmas and elucidating evolution of cosmic structures and objects”. To fulfill this charge, four categories of science objectives that were defined for Hitomi will also be pursued by XARM; these include (1) Structure formation of the Universe and evolution of clusters of galaxies; (2) Circulation history of baryonic matters in the Universe; (3) Transport and circulation of energy in the Universe; (4) New science with unprecedented high resolution X-ray spectroscopy. In order to achieve these scientific objectives, XARM will carry a 6 × 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and a wider field of view. This paper introduces the science objectives, mission concept, and observing plan of XARM.
The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.
The Hitomi (ASTRO-H) mission is the sixth Japanese X-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. After a successful launch on 2016 February 17, the spacecraft lost its function on 2016 March 26, but the commissioning phase for about a month provided valuable information on the on-board instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sensitive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of ΔE ≤ 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts.
The 2010 Decadal Survey of Astronomy and Astrophysics found the science of the International X-ray Observatory (IXO) compelling, noting that “Large-aperture, time-resolved, high-resolution X-ray spectroscopy is required for future progress on all of these fronts, and this is what IXO can deliver.” In line with Decadal recommendations to reduce cost while maintaining core capabilities, we have developed the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO). AXSIO reduces IXO's six instruments to two fixed detectors - the imaging X-ray Microcalorimeter Spectrometer and the X-ray Grating Spectrometer. These instruments allow AXSIO to accomplish most of the IXO science goals at a significantly reduced complexity and cost. We present an overview of the AXSIO mission science drivers, its optics and instrumental capabilities, the status of its technology development programs, and the mission implementation approach.
In September 2011 NASA released a Request for Information on “Concepts for the Next NASA X-ray Astronomy
Mission” and formed a Community Science Team to help study the submitted concepts and evaluate their science return
relative to the goals identified by the 2010 Astrophysics Decadal Survey “New Worlds, New Horizons” report. After
reading the responses and participating in a community workshop, the team identified a number of candidate mission
concepts, including one combining advances in large-area precision optics with new X-ray microcalorimeter
technology. However, the exact mission requirements (effective area, field of view, point spread function, etc) were not
fixed. We will present a range of mission designs, describing the results of the NASA/GSFC Mission Design Lab study
of one possible mission along with available deltas that would increase capability or decrease cost.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated
by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the highenergy
universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV.
These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3–12 keV with
high spectral resolution of ΔE ≦ 7 eV, enabled by a micro-calorimeter array located in the focal plane of
thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5–80 keV, located in the focal plane of
multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4–12 keV,
with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera
type soft gamma-ray detector, sensitive in the 40–600 keV band. The simultaneous broad bandpass, coupled
with high spectral resolution, will enable the pursuit of a wide variety of important science themes.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated
by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the
high-energy universe by performing high-resolution, high-throughput spectroscopy with moderate angular
resolution. ASTRO-H covers very wide energy range from 0.3 keV to 600 keV. ASTRO-H allows a combination
of wide band X-ray spectroscopy (5-80 keV) provided by multilayer coating, focusing hard X-ray
mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3-12 keV)
provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD
camera as a focal plane detector for a soft X-ray telescope (0.4-12 keV) and a non-focusing soft gamma-ray
detector (40-600 keV) . The micro-calorimeter system is developed by an international collaboration led
by ISAS/JAXA and NASA. The simultaneous broad bandpass, coupled with high spectral resolution of
ΔE ~7 eV provided by the micro-calorimeter will enable a wide variety of important science themes to be
pursued.
The Constellation-X Observatory is currently planned as NASA's next major X-ray observatory to be launched towards
the end of the next decade. The driving science goals for the mission are to: 1) Trace the evolution of Black Holes with
cosmic time and determine their contribution to the energy output of the Universe; 2) Observe matter spiraling into
Black Holes to test the predictions of General Relativity; 3) Use galaxy clusters to trace the locations of Dark Matter and
follow the formation of structure as a function of distance; 4) Search for the missing baryonic matter; 5) Directly observe
the dynamics of Cosmic Feedback to test models for galaxy formation; 6) Observe the creation and dispersion of the
elements in supernovae; and 7) Precisely constrain the equation of state of neutron stars. To achieve these science goals
requires high resolution (R > 1250) X-ray spectroscopy with 100 times the throughput of the Chandra and XMMNewton.
The Constellation-X Observatory will achieve this requirement with a combination of four large X-ray
telescopes on a single satellite operating in the 0.25 to 10 keV range. These telescopes will feed X-ray micro-calorimeter
arrays and grating spectrometers. A hard X-ray telescope system will provide coverage up to at least 40 keV. We
describe the mission science drivers and the mission implementation approach.
We report on the prospects for the study of the first stars, galaxies and black holes with the Generation-X Mission.
Generation-X is a NASA "Vision Mission" which completed preliminary study in lat e2006. Generation-X was approved
in February 2008 as an Astrophysics Strategic Mission Concept Study (ASMCS) and is baselined as an X-ray
observatory with 50 square meters of collecting area at 1 keV (500 times larger than Chandra) and 0.1 arcsecond angular
resolution (several times better than Chandra and 50 times better than the Constellation-X resolution goal). Such a high
energy observatory will be capable of detecting the earliest black holes and galaxies in the Universe, and will also study
the chemical evolution of the Universe and extremes of density, gravity, magnetic fields, and kinetic energy which
cannot be created in laboratories. A direct signature of the formation of the first galaxies, stars and black holes is
predicted to be X-ray emission at characteristic X-ray temperatures of 0.1-1 keV from the collapsing proto-galaxies
before they cool and form the first stars.
The Constellation-X mission will address questions central to the NASA Beyond Einstein Program, using high
throughput X-ray spectroscopy to measure the effects of strong gravity close to the event horizon of black holes, study
the formation and evolution of clusters of galaxies to precisely determine cosmological parameter values, measure the
properties of the Warm-Hot Intergalactic Medium, and determine the equation of state of neutron stars. Achieving these
science goals requires a factor of ~100 increase in sensitivity for high resolution spectroscopy over current X-ray
observatories. This paper briefly describes the Constellation-X mission, summarizes its basic performance parameters
such as effective area and spectral resolution, and gives a general update on the mission. The details of the updated
mission configuration, compatible with a single Atlas-V 551 launch vehicle, are presented.
In the ROSAT era of the mid-1990's, the problems facing deep X-ray surveys could be largely solved with 10 m class telescopes. In the first decade of this new millennium, with X-ray telescopes such as the Chandra X-ray Observatory and XMM-Newton in operation, deep X-ray surveys are challenging 10 m telescopes. For example, in the Chandra Deep Field surveys, ≈ 30% of the X-ray sources have optical counterparts fainter than R=25 (I=24).
This paper reviews current progress with 6-10 m class telescopes in following up sources discovered in deep X-ray surveys, including results from several X-ray surveys which have depended on telescopes such as Keck, VLT and HET. Topics include the prospects for detecting extreme redshift (z > 6) quasars and the first detections of normal and starburst galaxies at cosmologically interesting distances in the X-ray band.
X-ray astronomy can significantly bolster the science case for the next generation of large aperture (30-100 m) ground-based telescopes and has already provided targets for these large telescopes through the Chandra and XMM-Newton surveys. The next generation of X-ray telescopes will continue to challenge large optical telescopes; this review concludes with a discussion of prospects from new X-ray missions coming into operation on a 5-30 year timescale.
The energy resolution degradation of the ACIS CCDs on board the Chandra X-ray Observatory has been under investigation since the effect was first recognized two months after launch. A series of laboratory CCD irradiations with electrons and protons have taken place, leading to the belief that low energy protons are responsible for the damage. In order to confirm this, an experiment has been devised to represent the flight experience of the ACIS CCDs, and the results to date are shown here.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.