A pulsed neutron source is used to interrogate a target, producing secondary gammas and neutrons. In order to make
good use of the relatively small number of gamma rays that emerge from the system after the neutron flash, our detector
system must be both efficient in converting gamma rays to a detectable electronic signal and reasonably large in volume.
Isotropic gamma rays are emitted from the target. These signals are converted to light within a large chamber of a liquid
scintillator. To provide adequate time-of-flight separation between the gamma and neutron signals, the liquid scintillator
is placed meters away from the target under interrogation. An acrylic PMMA (polymethyl methacrylate) light guide
directs the emission light from the chamber into a 5-inch-diameter photomultiplier tube. However, this PMMA light
guide produces a time delay for much of the light.
Illumination design programs count rays traced from the source to a receiver. By including the index of refraction of the
different materials that the rays pass through, the optical power at the receiver is calculated. An illumination design
program can be used to optimize the optical material geometries to maximize the ray count and/or the receiver power. A
macro was written to collect the optical path lengths of the rays and import them into a spreadsheet, where histograms of
the time histories of the rays are plotted. This method allows optimization on the time response of different optical
detector systems. One liquid scintillator chamber has been filled with a grid of reflective plates to improve its time
response. Cylindrical detector geometries are more efficient.
KEYWORDS: Amplifiers, Sensors, Pyrometry, Temperature metrology, Signal to noise ratio, Physics, Infrared detectors, Signal detection, Black bodies, Infrared radiation
At Los Alamos National Laboratory (LANL), a high-speed, four-wavelength, infrared (IR) pyrometer has been used for surface temperature measurements in shock-physics experiments for several years. The pyrometer uses solid-state detectors and a single fiber-optic cable for transmission of light from the target surface to the detectors. This instrument has recently been redesigned for an upcoming experiment at the Nevada Test Site (NTS). Three different IR detectors (two HgCdTe variants as well as the existing InSb chip) were compared for sensitivity, signal-to-noise ratio, and bandwidth. Of major concern was detector amplifier recovery time from overload saturation. In shock-physics experiments, a short but very bright precursor frequently accompanies shock breakout (often from trapped air). This precursor can saturate the amplifier and may "swamp-out" the signal of interest before the amplifier recovers. With this in mind, we evaluated two new amplifier designs by the Perry Amplifier Company for linearity, signal-to-noise characteristics, gain, and saturation recovery time. This paper describes experimental setup for detector comparison and results obtained. Furthermore, we discuss new amplifier design and suitability for high-speed infrared pyrometry in shock physics experiments.
In an effort to understand the influence of different surface finishes and the effect of ejecta mass on free surface temperature measurements, we performed a series of high-explosively (HE) shocked tin experiments. In this series of experiments the surface finish (i.e, specular, shallow grooves (16 μinch), deep grooves (200 μinch) and "ball-rolled" surfaces) and the ambient atmosphere (from 1.2 torr, to atmospheric air, as well as 1 atm helium) were varied. With a ~180 kbar shock pressure the temperature results agreed for all but the very deep groove (>200 μinch) surfaces investigated.
In addition to the standard problems associated with contactless temperature measurements, pyrometry in shock physics experiments has many additional concerns. These include background temperatures which are often higher than the substrate temperature, non-uniform sample temperature due to hotspots and ejecta, fast sample motion up to several km.s-1, fast-changing sample emissivity at shock breakout, and very short measurement times. We have designed a four channel, high speed near-infrared (NIR) pyrometer for measurements in the 400 to 1000K blackbody temperature range. The front end optics are specific to each experiment, utilizing preferably reflective optics in order to mitigate spectral dispersion. Next-generation instruments under development are also discussed.
Mark Wilke, Andrew Obst, Dan Winske, Michael Jones, Stuart Baker, Joseph Abdallah, Stephen Caldwell, Robert Watt, S. Robert Goldman, Bruno Bauer, Robert Gibson
Colliding Au, CD, and Ti-CR plasmas have been generated by illuminating two opposing foils each with an approximately 100J, 0.5 nsec, 2(omega) Nd-glass laser beam from the Trident laser facility at Los Alamos. The plasmas are being used to study plasma interactions which span the parameter regime from interpenetrating to collisional stagnation. X-ray emission during the laser target interaction and the subsequent collision is used to diagnose the initial plasma conditions and the colliding plasma properties. X-ray instrumentation consists of a 100 ps gated x-ray pinhole imager, a time-integrated bremsstrahlung x-ray spectrograph and a gated x-ray spectrograph used to record isoelectronic spectra from the Ti-Cr plasmas. The imager has obtained multiframe images of the collision and therefore, a measure of the stagnation length which is a function of the ion charge state and density and a strong function of the electon temperature. Other isntrumentation includes a Thomson scattering spectrometer with probe beam, neutron detectors used to monitor the CE coated foil collisions, and an ion spectrometer. We will describe the current status of the experiments and current results with emphasis on the x-ray emission diagnostics. We will also briefly describe the modeling using Lasnex and ISIS, a particle-in-cell code with massless fluid electronics and inter-particle (classical) collisions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.