The morphology of the human ear presents rich and stable information embedded on the curved 3-D surface and has as a result attracted considerable attention from forensic scientists and engineers as a biometric recognition modality. However, recognizing a person’s identity from the morphology of the human ear in unconstrained environments, with insufficient and incomplete training data, strong person-specificity, and high within-range variance, can be very challenging. Following our previous work on ear recognition based on local texture descriptors, we propose to use anatomical and embryological information about the human ear in order to find the autonomous components and the locations where large interindividual variations can be detected. Embryology is particularly relevant to our approach as it provides information on the possible changes that can be observed in the external structure of the ear. We experimented with three publicly available databases, namely: IIT Delhi-1, IIT Delhi-2, and USTB-1, consisting of several ear benchmarks acquired under varying conditions and imaging qualities. The experiments show excellent results, beyond the state of the art.
Automated personal identification using the shape of the human ear is emerging as an appealing modality in biometric and forensic domains. This is mainly due to the fact that the ear pattern can provide rich and stable information to differentiate and recognize people. In the literature, there are many approaches and descriptors that achieve relatively good results in constrained environments. The recognition performance tends, however, to significantly decrease under illumination variation, pose variation, and partial occlusion. In this work, we investigate the use of local texture descriptors, namely local binary patterns, local phase quantization, and binarized statistical image features for robust human identification from two-dimensional ear imaging. In contrast to global image descriptors which compute features directly from the entire image, local descriptors representing the features in small local image patches have proven to be more effective in real-world conditions. Our extensive experimental results on the benchmarks IIT Delhi-1, IIT Delhi-2, and USTB ear databases show that local texture features in general and BSIF in particular provide a significant performance improvement compared to the state-of-the-art.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.