Purpose: Visual search using volumetric images is becoming the standard in medical imaging. However, we do not fully understand how eye movement strategies mediate diagnostic performance. A recent study on computed tomography (CT) images showed that the search strategies of radiologists could be classified based on saccade amplitudes and cross-quadrant eye movements [eye movement index (EMI)] into two categories: drillers and scanners.
Approach: We investigate how the number of times a radiologist scrolls in a given direction during analysis of the images (number of courses) could add a supplementary variable to use to characterize search strategies. We used a set of 15 normal liver CT images in which we inserted 1 to 5 hypodense metastases of two different signal contrast amplitudes. Twenty radiologists were asked to search for the metastases while their eye-gaze was recorded by an eye-tracker device (EyeLink1000, SR Research Ltd., Mississauga, Ontario, Canada).
Results: We found that categorizing radiologists based on the number of courses (rather than EMI) could better predict differences in decision times, percentage of image covered, and search error rates. Radiologists with a larger number of courses covered more volume in more time, found more metastases, and made fewer search errors than those with a lower number of courses. Our results suggest that the traditional definition of drillers and scanners could be expanded to include scrolling behavior. Drillers could be defined as scrolling back and forth through the image stack, each time exploring a different area on each image (low EMI and high number of courses). Scanners could be defined as scrolling progressively through the stack of images and focusing on different areas within each image slice (high EMI and low number of courses).
Conclusions: Together, our results further enhance the understanding of how radiologists investigate three-dimensional volumes and may improve how to teach effective reading strategies to radiology residents.
Task-based image quality procedures in CT that substitute a human observer with a model observer usually use single-slice images with uniform backgrounds from homogeneous phantoms. However, anatomical structures and inhomogeneities in organs generate noise that can affect the detection performance of human observers. The purpose of this work was to assess the impact of background type, uniform or liver, and the viewing modality, single- or multislice, on the detection performance of human and model observers. We collected abdominal CT scans from patients and homogeneous phantom scans in which we digitally inserted low-contrast signals that mimicked a liver lesion. We ran a rating experiment with the two background conditions with three signal sizes and three human observers presenting images in two reading modalities: single- and multislice. In addition, channelized Hotelling observers (CHO) for single- and multislice detection were implemented and evaluated according to their degree of correlation with the human observer performance. For human observers, there was a small but significant improvement in performance with multislice compared to the single-slice viewing mode. Our data did not reveal a significant difference between uniform and anatomical backgrounds. Model observers demonstrated a good correlation with human observers for both viewing modalities. Human observers have very similar performances in both multi- and single-slice viewing mode. It is therefore preferable to use single-slice CHO as this model is computationally more tractable than multislice CHO. However, using images from a homogeneous phantom can result in overestimating image quality as CHO performance tends to be higher in uniform than anatomical backgrounds, while human observers have similar detection performances.
Model observers have gained popularity as a surrogate approach for image quality assessment, they are often used for the optimization of the reconstruction algorithm. The most widespread model observer is the channelized Hotelling observer (CHO) that allows measuring the image quality by calculating the detectability index (or associated area under receiver operating characteristic curve). In this work we have chosen to explore different resampling methods used to estimate the CHO performance and uncertainty. In this paper, using data from the inter-laboratory comparison of the computation of CHO model observer study, we established a simulation framework to fully evaluate different resampling methods, namely, leave-one out and bootstrapping with replacement to estimate the CHO’s detectability index bias and uncertainty. For this particular study, we focus our experiments on datasets with a few data samples, 200 normal and 200 abnormal images.
Image quality assessment is crucial for the optimization of computed tomography (CT) protocols. Human and mathematical model observers are increasingly used for the detection of low contrast signal in abdominal CT, but are frequently limited to the use of a single image slice. Another limitation is that most of them only consider the detection of a signal embedded in a uniform background phantom. The purpose of this paper was to test if human observer performance is significantly different in CT images read in single or multiple slice modes and if these differences are the same for anatomical and uniform clinical images. We investigated detection performance and scrolling trends of human observers of a simulated liver lesion embedded in anatomical and uniform CT backgrounds. Results show that observers don’t take significantly benefit of additional information provided in multi-slice reading mode. Regarding the background, performances are moderately higher for uniform than for anatomical images. Our results suggest that for low contrast detection in abdominal CT, the use of multi-slice model observers would probably only add a marginal benefit. On the other hand, the quality of a CT image is more accurately estimated with clinical anatomical backgrounds.
Major technological advances in CT enable the acquisition of high quality images while minimizing patient exposure. The goal of this study was to objectively compare two generations of iterative reconstruction (IR) algorithms for the detection of low contrast structures. An abdominal phantom (QRM, Germany), containing 8, 6 and 5mm-diameter spheres (with a nominal contrast of 20HU) was scanned using our standard clinical noise index settings on a GE CT: “Discovery 750 HD”. Two additional rings (2.5 and 5 cm) were also added to the phantom. Images were reconstructed using FBP, ASIR-50%, and VEO (full statistical Model Based Iterative Reconstruction, MBIR). The reconstructed slice thickness was 2.5 mm except 0.625 mm for VEO reconstructions. NPS was calculated to highlight the potential noise reduction of each IR algorithm. To assess LCD (low Contrast Detectability), a Channelized Hotelling Observer (CHO) with 10 DDoG channels was used with the area under the curve (AUC) as a figure of merit. Spheres contrast was also measured. ASIR-50% allowed a noise reduction by a factor two when compared to FBP without an improvement of the LCD. VEO allowed an additional noise reduction with a thinner slice thickness compared to ASIR-50% but with a major improvement of the LCD especially for the large-sized phantom and small lesions. Contrast decreased up to 10% with the phantom size increase for FBP and ASIR-50% and remained constant with VEO. VEO is particularly interesting for LCD when dealing with large patients and small lesion sizes and when the detection task is difficult.
Large X-ray beam collimation in computed tomography (CT) opens the way to new image acquisition techniques and improves patient management for several clinical indications. The systems that offer large X-ray beam collimation enable, in particular, a whole region of interest to be investigated with an excellent temporal resolution. However, one of the potential drawbacks of this option might be a noticeable difference in image quality along the z-axis when compared with the standard helical acquisition mode using more restricted X-ray beam collimations. The aim of this project is to investigate the impact of the use of large X-ray beam collimation and new iterative reconstruction on noise properties, spatial resolution and low contrast detectability (LCD). An anthropomorphic phantom and a custom made phantom were scanned on a GE Revolution CT. The images were reconstructed respectively with ASIR-V at 0% and 50%. Noise power spectra, to evaluate the noise properties, and Target Transfer Functions, to evaluate the spatial resolution, were computed. Then, a Channelized Hotelling Observer with Gabor and Dense Difference of Gaussian channels was used to evaluate the LCD using the Percentage correct as a figure of merit. Noticeable differences of 3D noise power spectra and MTF have been recorded; however no significant difference appeared when dealing with the LCD criteria. As expected the use of iterative reconstruction, for a given CTDIvol level, allowed a significant gain in LCD in comparison to ASIR-V 0%. In addition, the outcomes of the NPS and TTF metrics led to results that would contradict the outcomes of CHO model observers if used for a NPWE model observer (Non- Prewhitening With Eye filter). The unit investigated provides major advantages for cardiac diagnosis without impairing the image quality level of standard chest or abdominal acquisitions.
In x-ray computed tomography (CT), task-based image quality studies are typically performed using uniform background phantoms with low-contrast signals. Such studies may have limited clinical relevancy for modern non-linear CT systems due to possible influence of background texture on image quality. The purpose of this study was to design and implement anatomically informed textured phantoms for task-based assessment of low-contrast detection. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find the CLB parameters that were most reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, a cylinder phantom (165 mm in diameter and 30 mm height) was designed, containing 20 low-contrast spherical signals (6 mm in diameter at targeted contrast levels of ~3.2, 5.2, 7.2, 10, and 14 HU, 4 repeats per signal). The phantom was voxelized and input into a commercial multi-material 3D printer (Object Connex 350), with custom software for voxel-based printing. Using principles of digital half-toning and dithering, the 3D printer was programmed to distribute two base materials (VeroWhite and TangoPlus, nominal voxel size of 42x84x30 microns) to achieve the targeted spatial distribution of x-ray attenuation properties. The phantom was used for task-based image quality assessment of a clinically available iterative reconstruction algorithm (Sinogram Affirmed Iterative Reconstruction, SAFIRE) using a channelized Hotelling observer paradigm. Images of the textured phantom and a corresponding uniform phantom were acquired at six dose levels and observer model performance was estimated for each condition (5 contrasts x 6 doses x 2 reconstructions x 2 backgrounds = 120 total conditions). Based on the observer model results, the dose reduction potential of SAFIRE was computed and compared between the uniform and textured phantom. The dose reduction potential of SAFIRE was found to be 23% based on the uniform phantom and 17% based on the textured phantom. This discrepancy demonstrates the need to consider background texture when assessing non-linear reconstruction algorithms.
X-ray medical imaging is increasingly becoming three-dimensional (3-D). The dose to the population and its management are of special concern in computed tomography (CT). Task-based methods with model observers to assess the dose-image quality trade-off are promising tools, but they still need to be validated for real volumetric images. The purpose of the present work is to evaluate anthropomorphic model observers in 3-D detection tasks for low-contrast CT images. We scanned a low-contrast phantom containing four types of signals at three dose levels and used two reconstruction algorithms. We implemented a multislice model observer based on the channelized Hotelling observer (msCHO) with anthropomorphic channels and investigated different internal noise methods. We found a good correlation for all tested model observers. These results suggest that the msCHO can be used as a relevant task-based method to evaluate low-contrast detection for CT and optimize scan protocols to lower dose in an efficient way.
KEYWORDS: Data modeling, 3D modeling, Performance modeling, Reconstruction algorithms, Computed tomography, Signal detection, Signal to noise ratio, Image quality, Molybdenum, Infrared imaging
Task-based medical image quality is often assessed by model observers for single slice images. The goal of the study was to determine if model observers can predict human detection performance of low contrast signals in CT for clinical multi-slice (ms) images. We collected 24 different data subsets from a low contrast phantom: 3 dose levels (40, 90, 150 mAs), 4 signals (6 and 8 mm diameter; 10 and 20 HU at 120kV) and 2 reconstruction algorithms (FBP and iterative (IR)). Images were assessed by human and model observers in 4-alternative forced choice (4AFC) experiments with ms data set in a signal-known-exactly (SKE) paradigm. Model observers with single (msCHOa) and multiple (msCHOb) templates were implemented in a train and test method analysis with Dense Difference of Gaussian (DDoG) and Gabor spatial channels. For human observers, we found that percent correct increased with the dose and was higher for iterative reconstructed images than FBP in all investigated conditions. All model observers implemented overestimated human performance in any condition except one case (6mm and 10HU) for msCHOa and msCHOb with Gabor channels. Internal noise could be implemented and a good agreement was found but necessitates independent fits according to the reconstruction method. Generally msCHOb shows higher detection performance than msCHOa with both types of channels. Gabor channels were less efficient than DDoG in this context. These results allow further developments in 3D analysis technique for low contrast CT.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.