John Corlett, William Barletta, Stefano DeSantis, Larry Doolittle, William Fawley, Philip Heimann, Stephen Leone, Steven Lidia, Derun Li, Gregory Penn, Alex Ratti, Matheus Reinsch, Robert Schoenlein, John Staples, Gregory Stover, Steve Virostek, Weishi Wan, Russell Wells, Russell Wilcox, Andy Wolski, Jonathan Wurtele, Alexander Zholents
We describe the design concepts for a potential future source of femtosecond x-ray pulses based on synchrotron radiation production in a recirculating electron linac. Using harmonic cascade free-electron lasers (FEL's) and spontaneous emission in short-period, narrow-gap insertion devices, a broad range of photon energies are available with tunability from EUV to hard x-ray regimes. Photon pulse durations are controllable and range from 10 fs to 200 fs, with fluxes 107-1012 photons per pulse. Full spatial and temporal coherence is obtained for EUV and soft X-rays. A fiber laser master oscillator and stabilized timing distribution scheme are proposed to synchronize accelerator rf systems and multiple lasers throughout the facility, allowing timing synchronization between sample excitation and X-ray probe of approximately 20-50 fs.
We propose the use of a ultra-relativistic electron beam interacting with a few-cycle, intense laser pulse and an intense pulse of the coherent x-rays to produce a multi-MW intensity, x-ray pulses
approximately 100 attoseconds in duration. Due to a naturally-occurring frequency chirp, these pulses can be further temporally compressed.
The Linac-based Ultrafast X-ray source (LUX) is a proposed recirculating linear accelerator for the purpose of producing intense, tunable, high repetition rate ultrafast x-ray pulses. An angle-time or position-time correlation is induced in the electron bunches by a dipole-mode RF cavity. Undulators and wigglers are sources of synchrotron radiation. Asymmetrically-cut crystals are used as optical elements of an x-ray pulse compression scheme. X-ray pulse durations of 50-100 fs are obtained over a range of photon energies from 2 to 12 keV. An undulator beamline consists of a collimating mirror, two asymmetric crystals and Kirkpatrick-Baez mirrors and provides compressed, monochromatic and focused x-rays for time-resolved experiments.
We are reporting on the current design status of the 200 kW average power FEL at a 0.84 micron wavelength for power beaming of satellites. The project includes a cw RF photocathode gun injector, a cw linear accelerator, achromatic beam transport lines and an FEL amplifier. Problems that are specific to our design are considered.
The FELs based on the rf accelerator-recuperator and the electron outcoupling is promising for obtaining average output power of hundreds of kilowatts. We present basic considerations for the system stability and performance optimization for this scheme.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.