We demonstrate the feasibility of applying the emerging technology of internal discrete amplification to create an efficient, ultra low noise, universal analog and counting photodetector for LIDAR remote sensing. Photodetectors with internal discrete amplification can operate in the linear detection mode with a gain-bandwidth product of up to 1015 and in the photon counting mode with count rates of up to 109 counts/sec. Detectors based on this mechanism could have performance parameters superior to those of conventional avalanche photodiodes and photomultiplier tubes. For silicon photodetector prototypes, measured excess noise factor is as low as 1.02 at gains greater than 100,000. This gives the photodetectors and, consequently, the LIDAR systems new capabilities that could lead to important advances in LIDAR remote sensing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.