This paper proposes a stereo matching method that uses a support point grid in order to compute the prior disparity. Convolutional neural networks are used to compute the matching cost between pixels in two pictures. The network architecture is described as well as teaching process. The method was evaluated on Middlebury benchmark images. The results of accuracy estimation in case of using data from a LIDAR as an input for the support points grid is described. This approach can be used in multi-sensor devices and can give an advantage in accuracy up to 15%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.