Widely tunable narrowband mid-infrared coherent sources, realized using optical parametric oscillators, play an essential role in spectroscopic investigations. A part of mid-infrared spectral region is a “fingerprint range” of solid-state materials, therefore, narrow linewidth is a particularly important feature. The most suitable linewidth of radiation to satisfy the required resolution for spectroscopy of solids is 2‒6 cm-1. The biggest challenge for the developer of the laser source is meeting customers’ needs and providing numerous parameters simultaneously from a single device: broad spectral range, high spectral resolution, fast wavelength tuning, high repetition rate, stable beam direction, nearly diffraction-limited divergence, etc. All this should be provided throughout the entire operational spectral range. These features are relevant for many applications, especially for Scanning Near-field Optical Microscopy (SNOM). This presentation will describe the architecture and applications of EKSPLA's broadly tunable commercial ns and ps laser sources, from 2 to 18 μm based on OP-GaAs fan-type gratings and other mid-infrared OPO nonlinear crystals. The advantages and limitations of the crystals in different narrowband OPO setups will be presented.
Glass drilling and welding applications realized with the help of femtosecond lasers attract industrial attention , however, desired tasks may require systems employing high numerical aperture (NA) focusing conditions, low repetition rate lasers and complex fast motion translation stages. Due to the sensitivity of such systems, slight instabilities in parameter values can lead to crack formations, severe fabrication rate decrement and poor quality overall results. A microfabrication system lacking the stated disadvantages was constructed and demonstrated in this report. An f-theta lens was used in combination with a galvanometric scanner, in addition, a water pumping system that enables formation of water films of variable thickness in real time on the samples. Water acts as a medium for filament formation, which in turn decreases the focal spot diameter and increases fluence and axial focal length . This article demonstrates the application of a femtosecond (280fs) laser towards two different micromachining techniques: rapid cutting and welding of transparent materials. Filament formation in water gives rise to strong ablation at the surface of the sample, moreover, the water, surrounding the ablated area, adds increased cooling and protection from cracking. The constructed microfabrication system is capable of drilling holes in thick soda-lime and hardened glasses. The fabrication time varies depending on the diameter of the hole and spans from a few to several hundred seconds. Moreover, complex-shape fabrication was demonstrated. Filament formation at the interface of two glass samples was also used for welding applications. By varying repetition rate, scanning speed and focal position optimal conditions for strong glass welding via filamentation were determined.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.