The cancer diagnostic workflow is typically performed by highly specialized and trained pathologists, for which analysis is expensive both in terms of time and money. This work focuses on grade classification in colon cancer. The analysis is performed over 3 protein markers; namely E-cadherin, beta actin and colagenIV. In addition, we also use a virtual Hematoxylin and Eosin (HE) stain. This study involves a comparison of various ways in which we can manipulate the information over the 4 different images of the tissue samples and come up with a coherent and unified response based on the data at our disposal. Pre- trained convolutional neural networks (CNNs) is the method of choice for feature extraction. The AlexNet architecture trained on the ImageNet database is used for this purpose. We extract a 4096 dimensional
feature vector corresponding to the 6th layer in the network. Linear SVM is used to classify the data. The
information from the 4 different images pertaining to a particular tissue sample; are combined using the following techniques: soft voting, hard voting, multiplication, addition, linear combination, concatenation and multi-channel feature extraction. We observe that we obtain better results in general than when we use a linear combination of the feature representations. We use 5-fold cross validation to perform the experiments. The best results are obtained when the various features are linearly combined together resulting in a mean accuracy of 91.27%.
Hypodense metastases are not always completely distinguishable from benign cysts in the liver using conventional
Computed Tomography (CT) imaging, since the two lesion types present with overlapping intensity distributions
due to similar composition as well as other factors including beam hardening and patient motion. This problem
is extremely challenging for small lesions with diameter less than 1 cm. To accurately characterize such lesions,
multiple follow-up CT scans or additional Positron Emission Tomography or Magnetic Resonance Imaging exam
are often conducted, and in some cases a biopsy may be required after the initial CT finding. Gemstone
Spectral Imaging (GSI) with fast kVp switching enables projection-based material decomposition, offering the
opportunity to discriminate tissue types based on their energy-sensitive material attenuation and density. GSI
can be used to obtain monochromatic images where beam hardening is reduced or eliminated and the images
come inherently pre-registered due to the fast kVp switching acquisition. We present a supervised learning
method for discriminating between cysts and hypodense liver metastases using these monochromatic images.
Intensity-based statistical features extracted from voxels inside the lesion are used to train optimal linear and
nonlinear classifiers. Our algorithm only requires a region of interest within the lesion in order to compute
relevant features and perform classification, thus eliminating the need for an accurate segmentation of the lesion.
We report classifier performance using M-fold cross-validation on a large lesion database with radiologist-provided
lesion location and labels as the reference standard. Our results demonstrate that (a) classification using a single
projection-based spectral CT image, i.e., a monochromatic image at a specified keV, outperforms classification
using an image-based dual energy CT pair, i.e., low and high kVp images derived from the same fast kVp
acquisition and (b) classification using monochromatic images can achieve very high accuracy in separating
benign liver cysts and metastases, especially for small lesions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.