An important problem in modern therapeutics at the metabolomic, transcriptomic or phosphoproteomic level remains to identify therapeutic targets in a plentitude of high-throughput data from experiments relevant to a variety of diseases. This paper presents the application of novel graph algorithms and modern control solutions applied to the graph networks resulting from specific experiments to discover disease-related pathways and drug targets in glioma cancer stem cells (GSCs). The theoretical frameworks provides us with the minimal number of ”driver nodes” necessary to determine the full control over the obtained graph network in order to provide a change in the network’s dynamics from an initial state (disease) to a desired state (non-disease). The achieved results will provide biochemists with techniques to identify more metabolic regions and biological pathways for complex diseases, and design and test novel therapeutic solutions.
Non-mass enhancing lesions represent a challenge for the radiological reading. They are not well-defined in both
morphology (geometric shape) and kinetics (temporal enhancement) and pose a problem to lesion detection
and classification. To enhance the discriminative properties of an automated radiological workflow, the correct
preprocessing steps need to be taken. In an usual computer-aided diagnosis (CAD) system, motion compensation
plays an important role. To this end, we employ a new high accuracy optical flow based motion compensation
algorithm with robustification variants. An automated computer-aided diagnosis system evaluates the atypical
behavior of these lesions, and additionally considers the impact of non-rigid motion compensation on a correct
diagnosis.
Whole body CT scanning is a common diagnosis technique for discovering early signs of metastasis or for
differential diagnosis. Automatic parsing and segmentation of multiple organs and semantic navigation inside
the body can help the clinician in efficiently obtaining accurate diagnosis. However, dealing with the large amount
of data of a full body scan is challenging and techniques are needed for the fast detection and segmentation of
organs, e.g., heart, liver, kidneys, bladder, prostate, and spleen, and body landmarks, e.g., bronchial bifurcation,
coccyx tip, sternum, lung tips. Solving the problem becomes even more challenging if partial body scans are
used, where not all organs are present. We propose a new approach to this problem, in which a network of 1D
and 3D landmarks is trained to quickly parse the 3D CT data and estimate which organs and landmarks are
present as well as their most probable locations and boundaries. Using this approach, the segmentation of seven
organs and detection of 19 body landmarks can be obtained in about 20 seconds with state-of-the-art accuracy
and has been validated on 80 CT full or partial body scans.
Visualization of multi-dimensional data sets becomes a critical and
significant area in modern medical image processing. To analyze such
high dimensional data, novel nonlinear embedding approaches become
increasingly important to show dependencies among these data in a
two- or three-dimensional space. This paper investigates the
potential of novel nonlinear dimensional data reduction techniques
and compares their results with proven nonlinear techniques when
applied to the differentiation of malignant and benign lesions
described by high-dimensional data sets arising from dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI). Two
important visualization modalities in medical imaging are presented:
the mapping on a lower-dimensional data manifold and the image
fusion.
KEYWORDS: Heart, 3D modeling, Image segmentation, Statistical modeling, Data modeling, Process modeling, Systems modeling, Computed tomography, Databases, 3D image processing
Multi-chamber heart segmentation is a prerequisite for quantification of the cardiac function. In this paper, we propose an automatic heart chamber segmentation system. There are two closely related tasks to develop such a system: heart modeling and automatic model fitting to an unseen volume. The heart is a complicated non-rigid organ with four chambers and several major vessel trunks attached. A flexible and accurate model is necessary to capture the heart chamber shape at an appropriate level of details. In our four-chamber surface mesh model, the following two factors are considered and traded-off: 1) accuracy in anatomy and 2) easiness for both annotation and automatic detection. Important landmarks such as valves and cusp points on the interventricular septum are explicitly represented in our model. These landmarks can be detected reliably to guide the automatic model fitting process. We also propose two mechanisms, the rotation-axis based and parallel-slice based resampling methods, to establish mesh point correspondence, which is necessary to build a statistical shape model to enforce priori shape constraints in the model fitting procedure. Using this model, we develop an efficient and robust approach for automatic heart chamber segmentation in 3D computed tomography (CT) volumes. Our approach is based on recent advances in learning discriminative object models and we exploit a large database of annotated CT volumes. We formulate the segmentation as a two step learning problem: anatomical structure localization and boundary delineation. A novel algorithm, Marginal Space Learning (MSL), is introduced to solve the 9-dimensional similarity transformation search problem for localizing the heart chambers. After determining the pose of the heart chambers, we estimate the 3D shape through learning-based boundary delineation. Extensive experiments demonstrate the efficiency and robustness of the proposed approach, comparing favorably to the state-of-the-art. This is the first study reporting stable results on a large cardiac CT dataset with 323 volumes. In addition, we achieve a speed of less than eight seconds for automatic segmentation of all four chambers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.