The Lunar Ultraviolet Observatory (OUL) is a small instrument designed to map the Earth exosphere, the magnetosphere and the near-Earth space while orbiting the Moon. It can operate either as a flight-alone cubesat mission or as an instrument. The observatory is a small space telescope to be set in Lunar orbit to produce wide field images (10x10 deg2) in narrow and broad bands in the 115-175 nm spectral range. In this presentation, we will describe the results of the on-going tests of critical optical elements.
The mission Ultraviolet Researcher to Investigate the Emergence of Life (URIEL) is designed to carry out low dispersion (600-1,000) UV spectropolarimetry in the 140-400 nm spectral range to investigate the formation of planetary systems, its interaction with stellar winds and search for signatures of prebiotic molecules by remote sensing of small bodies in the Solar System (comets and meteorites) in near Earth orbit. URIEL is conceived as a 50cm primary telescope with a RitcheyChrétien mounting. The telescope is equipped with a single instrument, the ultraviolet spectropolarimeter, whose low dispersion will enable resolving the main spectral features whilst guaranteeing enough flux per resolution element for the Stokes parameters to be measured to an accuracy of 500 ppm in the full range. According to recent calculations based on the chemical analysis of meteorites, this accuracy suffices for the remote detection of alanine by its optical activity at 180 nm in nearby minor bodies. In this sense, URIEL is a pathfinder mission to the technology that will enable remote sensing of amino acids and addressing the source of the chirality imbalance in Earth's bio-molecules.
There is a growing interest in lunar exploration fed by the perception that the Moon can be made accessible to low-cost missions in the next decade. The ongoing projects to set a communications relay in lunar orbit and a deep space gateway, as well as the spreading of commercial-of-the shelf technology for small space platforms such as the cubesats contribute to this perception. Small, cubesat size satellites orbiting the Moon offer ample opportunities to study the Moon and enjoy an advantage point to monitor the Solar System and the large-scale interaction between the Earth and the solar wind. We describe the technical characteristics of a 12U cubesat to be set in polar lunar orbit for this purpose and the science behind it. The mission is named Earth as an exoplanet (EarthASAP) and is submitted to the Lunar Cubesats for Exploration call in 2016. EarthASAP is designed to monitor hydrated rock reservoirs in the lunar poles and to study the interaction between the large Earth’s exosphere and the solar wind in preparation for future exoplanetary missions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.